• Title/Summary/Keyword: Improved Support Vector Machine

Search Result 144, Processing Time 0.026 seconds

Hybrid SVM/ANN Algorithm for Efficient Indoor Positioning Determination in WLAN Environment (WLAN 환경에서 효율적인 실내측위 결정을 위한 혼합 SVM/ANN 알고리즘)

  • Kwon, Yong-Man;Lee, Jang-Jae
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.238-242
    • /
    • 2011
  • For any pattern matching based algorithm in WLAN environment, the characteristics of signal to noise ratio(SNR) to multiple access points(APs) are utilized to establish database in the training phase, and in the estimation phase, the actual two dimensional coordinates of mobile unit(MU) are estimated based on the comparison between the new recorded SNR and fingerprints stored in database. The system that uses the artificial neural network(ANN) falls in a local minima when it learns many nonlinear data, and its classification accuracy ratio becomes low. To make up for this risk, the SVM/ANN hybrid algorithm is proposed in this paper. The proposed algorithm is the method that ANN learns selectively after clustering the SNR data by SVM, then more improved performance estimation can be obtained than using ANN only and The proposed algorithm can make the higher classification accuracy by decreasing the nonlinearity of the massive data during the training procedure. Experimental results indicate that the proposed SVM/ANN hybrid algorithm generally outperforms ANN algorithm.

Improvement in Supervector Linear Kernel SVM for Speaker Identification Using Feature Enhancement and Training Length Adjustment (특징 강화 기법과 학습 데이터 길이 조절에 의한 Supervector Linear Kernel SVM 화자식별 개선)

  • So, Byung-Min;Kim, Kyung-Wha;Kim, Min-Seok;Yang, Il-Ho;Kim, Myung-Jae;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2011
  • In this paper, we propose a new method to improve the performance of supervector linear kernel SVM (Support Vector Machine) for speaker identification. This method is based on splitting one training datum into several pieces of utterances. We use four different databases for evaluating performance and use PCA (Principal Component Analysis), GKPCA (Greedy Kernel PCA) and KMDA (Kernel Multimodal Discriminant Analysis) for feature enhancement. As a result, the proposed method shows improved performance for speaker identification using supervector linear kernel SVM.

Implementation of Pedestrian Recognition Based on HOG using ROI for Real Time Processing (실시간 처리를 위한 ROI가 적용된 HOG 기반 보행자 인식 구현)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.581-585
    • /
    • 2014
  • In this paper, we propose a pedestrian detection by applying the HOG feature using ROI. Conventional HOG method has high accuracy, but shows the disadvantage of slow processing speed. By applying the ROI to the conventional method reduce computations for unnecessary area. Therefore proposed method improves the processing speed. In order to set the ROI area, we propose a structure that combined odd frames and even frames. Odd frame is in charge of operation for the entire area. And even frame does the operation for the ROI area. Implementation results of proposed method maintaining the same accuracy as the conventional method show a 20% improved performance of 8.3 frames per second.

Feature Voting for Object Localization via Density Ratio Estimation

  • Wang, Liantao;Deng, Dong;Chen, Chunlei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.6009-6027
    • /
    • 2019
  • Support vector machine (SVM) classifiers have been widely used for object detection. These methods usually locate the object by finding the region with maximal score in an image. With bag-of-features representation, the SVM score of an image region can be written as the sum of its inside feature-weights. As a result, the searching process can be executed efficiently by using strategies such as branch-and-bound. However, the feature-weight derived by optimizing region classification cannot really reveal the category knowledge of a feature-point, which could cause bad localization. In this paper, we represent a region in an image by a collection of local feature-points and determine the object by the region with the maximum posterior probability of belonging to the object class. Based on the Bayes' theorem and Naive-Bayes assumptions, the posterior probability is reformulated as the sum of feature-scores. The feature-score is manifested in the form of the logarithm of a probability ratio. Instead of estimating the numerator and denominator probabilities separately, we readily employ the density ratio estimation techniques directly, and overcome the above limitation. Experiments on a car dataset and PASCAL VOC 2007 dataset validated the effectiveness of our method compared to the baselines. In addition, the performance can be further improved by taking advantage of the recently developed deep convolutional neural network features.

Case Analyses of the Selection Process of an Excavation Method (지하공사 사례를 기반으로 한 터파기 공법 선정프로세스 분석)

  • Park, Sang-Hyun;Lee, Ghang;Choi, Myung-Seok;Kang, Hyun-Jeong;Rhim, Hong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.101-104
    • /
    • 2007
  • As the proportion of underground construction increases, the impact of inappropriate selection of a underground construction method for a construction size increases. The purpose of this study is to develop an objective way of selecting an excavation method. There have been several attempts to achieve the same goal using various data mining methods such as the artificial neural network, the support vector machine, and the case-based reasoning. However, they focused only on the selection of a retaining wall construction method out of six types of retaining walls. When we categorized an underground construction work into four groups and added more number of independent variables (i.e., more number of construction methods), the predictability decreased. As an alternative, we developed a decision tree by analyzing 25 earthwork cases with detailed information. We implemented the developed decision tree as a computer-supported program called Dr. underground and are still in the process of validating and revising the decision tree. This study is still in a preliminary stage and will be improved by collecting and analyzing more cases.

  • PDF

A 95% accurate EEG-connectome Processor for a Mental Health Monitoring System

  • Kim, Hyunki;Song, Kiseok;Roh, Taehwan;Yoo, Hoi-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.436-442
    • /
    • 2016
  • An electroencephalogram (EEG)-connectome processor to monitor and diagnose mental health is proposed. From 19-channel EEG signals, the proposed processor determines whether the mental state is healthy or unhealthy by extracting significant features from EEG signals and classifying them. Connectome approach is adopted for the best diagnosis accuracy, and synchronization likelihood (SL) is chosen as the connectome feature. Before computing SL, reconstruction optimizer (ReOpt) block compensates some parameters, resulting in improved accuracy. During SL calculation, a sparse matrix inscription (SMI) scheme is proposed to reduce the memory size to 1/24. From the calculated SL information, a small world feature extractor (SWFE) reduces the memory size to 1/29. Finally, using SLs or small word features, radial basis function (RBF) kernel-based support vector machine (SVM) diagnoses user's mental health condition. For RBF kernels, look-up-tables (LUTs) are used to replace the floating-point operations, decreasing the required operation by 54%. Consequently, The EEG-connectome processor improves the diagnosis accuracy from 89% to 95% in Alzheimer's disease case. The proposed processor occupies $3.8mm^2$ and consumes 1.71 mW with $0.18{\mu}m$ CMOS technology.

Orthonormal Polynomial based Optimal EEG Feature Extraction for Motor Imagery Brain-Computer Interface

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, we explored the new method for extracting feature from the electroencephalography (EEG) signal based on linear regression technique with the orthonormal polynomial bases. At first, EEG signals from electrodes around motor cortex were selected and were filtered in both spatial and temporal filter using band pass filter for alpha and beta rhymic band which considered related to the synchronization and desynchonization of firing neurons population during motor imagery task. Signal from epoch length 1s were fitted into linear regression with Legendre polynomials bases and extract the linear regression weight as final features. We compared our feature to the state of art feature, power band feature in binary classification using support vector machine (SVM) with 5-fold cross validations for comparing the classification accuracy. The result showed that our proposed method improved the classification accuracy 5.44% in average of all subject over power band features in individual subject study and 84.5% of classification accuracy with forward feature selection improvement.

A MA-plot-based Feature Selection by MRMR in SVM-RFE in RNA-Sequencing Data

  • Kim, Chayoung
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.25-30
    • /
    • 2018
  • It is extremely lacking and urgently required that the method of constructing the Gene Regulatory Network (GRN) from RNA-Sequencing data (RNA-Seq) because of Big-Data and GRN in Big-Data has obtained substantial observation as the interactions among relevant featured genes and their regulations. We propose newly the computational comparative feature patterns selection method by implementing a minimum-redundancy maximum-relevancy (MRMR) filter the support vector machine-recursive feature elimination (SVM-RFE) with Intensity-dependent normalization (DEGSEQ) as a preprocessor for emphasizing equal preciseness in RNA-seq in Big-Data. We found out the proposed algorithm might be more scalable and convenient because of all libraries in R package and be more improved in terms of the time consuming in Big-Data and minimum-redundancy maximum-relevancy of a set of feature patterns at the same time.

Study on the influence of Alpha wave music on working memory based on EEG

  • Xu, Xin;Sun, Jiawen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.467-479
    • /
    • 2022
  • Working memory (WM), which plays a vital role in daily activities, is a memory system that temporarily stores and processes information when people are engaged in complex cognitive activities. The influence of music on WM has been widely studied. In this work, we conducted a series of n-back memory experiments with different task difficulties and multiple trials on 14 subjects under the condition of no music and Alpha wave leading music. The analysis of behavioral data show that the change of music condition has significant effect on the accuracy and time of memory reaction (p<0.01), both of which are improved after the stimulation of Alpha wave music. Behavioral results also suggest that short-term training has no significant impact on working memory. In the further analysis of electrophysiology (EEG) data recorded in the experiment, auto-regressive (AR) model is employed to extract features, after which an average classification accuracy of 82.9% is achieved with support vector machine (SVM) classifier in distinguishing between before and after WM enhancement. The above findings indicate that Alpha wave leading music can improve WM, and the combination of AR model and SVM classifier is effective in detecting the brain activity changes resulting from music stimulation.

Modelling the deflection of reinforced concrete beams using the improved artificial neural network by imperialist competitive optimization

  • Li, Ning;Asteris, Panagiotis G.;Tran, Trung-Tin;Pradhan, Biswajeet;Nguyen, Hoang
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.733-745
    • /
    • 2022
  • This study proposed a robust artificial intelligence (AI) model based on the social behaviour of the imperialist competitive algorithm (ICA) and artificial neural network (ANN) for modelling the deflection of reinforced concrete beams, abbreviated as ICA-ANN model. Accordingly, the ICA was used to adjust and optimize the parameters of an ANN model (i.e., weights and biases) aiming to improve the accuracy of the ANN model in modelling the deflection reinforced concrete beams. A total of 120 experimental datasets of reinforced concrete beams were employed for this aim. Therein, applied load, tensile reinforcement strength and the reinforcement percentage were used to simulate the deflection of reinforced concrete beams. Besides, five other AI models, such as ANN, SVM (support vector machine), GLMNET (lasso and elastic-net regularized generalized linear models), CART (classification and regression tree) and KNN (k-nearest neighbours), were also used for the comprehensive assessment of the proposed model (i.e., ICA-ANN). The comparison of the derived results with the experimental findings demonstrates that among the developed models the ICA-ANN model is that can approximate the reinforced concrete beams deflection in a more reliable and robust manner.