• Title/Summary/Keyword: Improved Genetic Algorithm

Search Result 341, Processing Time 0.036 seconds

The Design of Target Tracking System Using FBFE based on VEGA (VEGA 기반 FBFE를 이용한 표적 추적 시스템 설계)

  • 이범직;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.126-130
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using fuzzy basis function expansion (FBFE) based on virus evolutionary genetic algorithm(VEGA). In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter (EKF), the performance of the system may be deteriorated in highly nonlinear situation. To resolve these problems of nonlinear filtering technique, by appling artificial intelligent technique to the tracking control of moving targets, we combine the advantages of both traditional and intelligent control technique. In the proposed method, after composing training datum from the parameters of extended Kalman filter, by combining FBFE, which has the strong ability for the approximation, with VEGA, which prevent GA from converging prematurely in the case of lack of genetic diversity of population, and by identifying the parameters and rule numbers of fuzzy basis function simultaneously, we can reduce the tracking error of EKF. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

Algorithms for Designing Optimal Keypads of Mobile Devices (최적의 휴대폰 키패드 디자인을 위한 알고리즘)

  • Kim, Hyun-Min;Kim, Yong-Hyuk
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.814-820
    • /
    • 2009
  • The arrangement of the general 12-button cellular phone keypad is unified with one or two kind. In general, the several alphabets are arranged in one key. When inputting an English, countries which do not speak English use multi-tap method. We can input next alphabet by pressing key repeatedly. We address the problem of finding multi-tap-based keypad designs which minimize the number of key presses for various case. Genetic algorithms is proposed method for optimal keypad designs. We are to maintain the number of keys, which is ranged from 8 to 12. We also show experimental using non-alphabetically-constrained and alphabetically-constrained arrangement, respectively. Finally, we give improved keypad designs.

Fuzzy Learning Method Using Genetic Algorithms

  • Choi, Sangho;Cho, Kyung-Dal;Park, Sa-Joon;Lee, Malrey;Kim, Kitae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.841-850
    • /
    • 2004
  • This paper proposes a GA and GDM-based method for removing unnecessary rules and generating relevant rules from the fuzzy rules corresponding to several fuzzy partitions. The aim of proposed method is to find a minimum set of fuzzy rules that can correctly classify all the training patterns. When the fine fuzzy partition is used with conventional methods, the number of fuzzy rules has been enormous and the performance of fuzzy inference system became low. This paper presents the application of GA as a means of finding optimal solutions over fuzzy partitions. In each rule, the antecedent part is made up the membership functions of a fuzzy set, and the consequent part is made up of a real number. The membership functions and the number of fuzzy inference rules are tuned by means of the GA, while the real numbers in the consequent parts of the rules are tuned by means of the gradient descent method. It is shown that the proposed method has improved than the performance of conventional method in formulating and solving a combinatorial optimization problem that has two objectives: to maximize the number of correctly classified patterns and to minimize the number of fuzzy rules.

  • PDF

A Study on Optimal Design of Blast Hardened Bulkheads to Reduce Vulnerability against Various Hit Scenarios (함정 피격 시나리오들에 대한 취약성 감소를 위한 폭발강화격벽 최적 설계 방법 연구)

  • Myojung, Kwak;Seungmin, Kwon;Yoojeong, Noh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.413-422
    • /
    • 2022
  • Blast Hardened Bulkheads (BHB) are used to suppress damage propagation by internal explosions to reduce ships'vulnerability. However, for this reason, the weight of the ship inevitably increased, and other functions such as the ships'mobility were bound to deteriorate. Therefore, it is essential in the initial design of the ship to optimize the dimensions of the bulkhead to minimize the weight while decreasing the vulnerability of the ship. Research on design optimization of BHB has been conducted, but it has not considered explosive load in various hit scenarios. This study proposed an optimal design method for the curtain plate type blast hardened bulkhead, which is currently frequently applied by the Korean Navy in consideration of various hit scenarios. Using genetic algorithms, multiobjective design optimizations that minimize weight increase as well as minimize damage to ships were obtained. By optimizing the dimensions of the BHB considering various hit scenarios, the ship's vulnerability was improved while maintaining its mobility due to weight reduction.

The Effect of Sample and Particle Sizes in Discrete Particle Swarm Optimization for Simulation-based Optimization Problems (시뮬레이션 최적화 문제 해결을 위한 이산 입자 군집 최적화에서 샘플수와 개체수의 효과)

  • Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.95-104
    • /
    • 2017
  • This paper deals with solution methods for discrete and multi-valued optimization problems. The objective function of the problem incorporates noise effects generated in case that fitness evaluation is accomplished by computer based experiments such as Monte Carlo simulation or discrete event simulation. Meta heuristics including Genetic Algorithm (GA) and Discrete Particle Swarm Optimization (DPSO) can be used to solve these simulation based multi-valued optimization problems. In applying these population based meta heuristics to simulation based optimization problem, samples size to estimate the expected fitness value of a solution and population (particle) size in a generation (step) should be carefully determined to obtain reliable solutions. Under realistic environment with restriction on available computation time, there exists trade-off between these values. In this paper, the effects of sample and population sizes are analyzed under well-known multi-modal and multi-dimensional test functions with randomly generated noise effects. From the experimental results, it is shown that the performance of DPSO is superior to that of GA. While appropriate determination of population sizes is more important than sample size in GA, appropriate determination of sample size is more important than particle size in DPSO. Especially in DPSO, the solution quality under increasing sample sizes with steps is inferior to constant or decreasing sample sizes with steps. Furthermore, the performance of DPSO is improved when OCBA (Optimal Computing Budget Allocation) is incorporated in selecting the best particle in each step. In applying OCBA in DPSO, smaller value of incremental sample size is preferred to obtain better solutions.

The Low Sidelobe Array Antenna Design of Mobile Antenna System for Satellite Multimedia Communications (위성 양방향 통신용 이동 안테나 시스템의 저부엽 특성 배열 안테나 설계)

  • Park Ung Hee;Son Seong Ho;Noh Haeng Sook;Jeon Soon Ik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.91-97
    • /
    • 2005
  • In the mobile antenna systems for satellite multimedia communications, the active way antenna having a low sidelobe antenna pattern is described in this paper. This designed and fabricated array antenna is satisfied with international beam pattern regulation on moving states. The subarray of the proposed mobile antenna system is arranged with a stair-planar structure and non-periodic array spacing. This subarray is designed with three-layered microstrip patch as both receiving and transmitting radiator of which are improved with antenna gain and bandwidth. Also, the optimum subarray spacing is designed to make the lowest sidelobe pattern by genetic algorithm. In addition, the characteristics of a GA-perturbed array are investigated from simulated and measured beam pattern results.

Multi-Objective Job Scheduling Model Based on NSGA-II for Grid Computing (그리드 컴퓨팅을 위한 NSGA-II 기반 다목적 작업 스케줄링 모델)

  • Kim, Sol-Ji;Kim, Tae-Ho;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.13-23
    • /
    • 2011
  • Grid computing is a new generation computing technology which organizes virtual high-performance computing system by connecting and sharing geographically distributed heterogeneous resources, and performing large-scaled computing operations. In order to maximize the performance of grid computing, job scheduling is essential which allocates jobs to resources effectively. Many studies have been performed which minimize total completion times, etc. However, resource costs are also important, and through the minimization of resource costs, the overall performance of grid computing and economic efficiency will be improved. So in this paper, we propose a multi-objective job scheduling model considering both time and cost. This model derives from the optimal scheduling solution using NSGA-II, which is a multi objective genetic algorithm, and guarantees the effectiveness of the proposed model by executing experiments with those of existing scheduling models such as Min-Min and Max-Min models. Through experiments, we prove that the proposed scheduling model minimizes time and cost more efficiently than existing scheduling models.

Study on Optimization for Scheduling of Local And Express Trains Considering the Application of High Performance Train (고성능 열차를 활용한 완급행 열차 운행 스케쥴 최적화 방안 연구)

  • Kim, Moosun;Kim, Jungtai;Ko, Kyeongjun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.234-242
    • /
    • 2016
  • In express operation plans for urban trains, it is effective for the reduction of the number of sidetracks to apply a high performance train that has improved acceleration/deceleration ability and a regular train to local and express trains, respectively. In this research, based on a plan to use a high performance train for a local train, an optimization methodology is suggested to reduce the number of sidetracks and the operation time of the local train simultaneously. The optimization solver applied in this research is a genetic algorithm; headway, location of sidetrack and waiting time at the sidetrack are considered as design variables in the optimization problem. Consequently, by applying this system to Seoul metro line no.7, the effect of the suggested methodology was verified by obtaining the proper optimum solution.

Optimization of Mobile Robot Predictive Controllers Under General Constraints (일반제한조건의 이동로봇예측제어기 최적화)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.602-610
    • /
    • 2018
  • The model predictive control is an effective method to optimize the current control input that predicts the current control state and the future error using the predictive model of the control system when the reference trajectory is known. Since the control input can not have a physically infinitely large value, a predictive controller design with constraints should be considered. In addition, the reference model $A_r$ and the weight matrices Q, R that determine the control performance of the predictive controller are not optimized as arbitrarily designated should be considered in the controller design. In this study, we construct a predictive controller of a mobile robot by transforming it into a quadratic programming problem with constraints, The control performance of the mobile robot can be improved by optimizing the control parameters of the predictive controller that determines the control performance of the mobile robot using genetic algorithm. Through the computer simulation, the superiority of the proposed method is confirmed by comparing with the existing method.

Machine Learning Perspective Gene Optimization for Efficient Induction Machine Design

  • Selvam, Ponmurugan Panneer;Narayanan, Rengarajan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1202-1211
    • /
    • 2018
  • In this paper, induction machine operation efficiency and torque is improved using Machine Learning based Gene Optimization (ML-GO) Technique is introduced. Optimized Genetic Algorithm (OGA) is used to select the optimal induction machine data. In OGA, selection, crossover and mutation process is carried out to find the optimal electrical machine data for induction machine design. Initially, many number of induction machine data are given as input for OGA. Then, fitness value is calculated for all induction machine data to find whether the criterion is satisfied or not through fitness function (i.e., objective function such as starting to full load torque ratio, rotor current, power factor and maximum flux density of stator and rotor teeth). When the criterion is not satisfied, annealed selection approach in OGA is used to move the selection criteria from exploration to exploitation to attain the optimal solution (i.e., efficient machine data). After the selection process, two point crossovers is carried out to select two crossover points within a chromosomes (i.e., design variables) and then swaps two parent's chromosomes for producing two new offspring. Finally, Adaptive Levy Mutation is used in OGA to select any value in random manner and gets mutated to obtain the optimal value. This process gets iterated till finding the optimal value for induction machine design. Experimental evaluation of ML-GO technique is carried out with performance metrics such as torque, rotor current, induction machine operation efficiency and rotor power factor compared to the state-of-the-art works.