• 제목/요약/키워드: Improve Renewable Energy Efficiency

검색결과 129건 처리시간 0.026초

SAC 강화 학습을 통한 스마트 그리드 효율성 향상: CityLearn 환경에서 재생 에너지 통합 및 최적 수요 반응 (Enhancing Smart Grid Efficiency through SAC Reinforcement Learning: Renewable Energy Integration and Optimal Demand Response in the CityLearn Environment)

  • 이자노브 알리벡 러스타모비치;성승제;임창균
    • 한국전자통신학회논문지
    • /
    • 제19권1호
    • /
    • pp.93-104
    • /
    • 2024
  • 수요 반응은 전력망의 신뢰성을 높이고 비용을 최소화하기 위해 수요가 가장 많은 시간대에 고객이 소비패턴을 조정하도록 유도한다. 재생 에너지원을 스마트 그리드에 통합하는 것은 간헐적이고 예측할 수 없는 특성으로 인해 상당한 도전 과제를 안고 있다. 강화 학습 기법과 결합된 수요 대응 전략은 이러한 문제를 해결하고 기존 방식에서는 이러한 종류의 복잡한 요구 사항을 충족하지 못하는 경우 그리드 운영을 최적화할 수 있는 접근 방식으로 부상하고 있다. 본 연구는 재생 에너지 통합을 위한 수요 반응에 강화 학습 알고리즘을 적용하는 방법을 찾아 적용하는데 중점을 둔다. 연구의 핵심 목표는 수요 측 유연성을 최적화하고 재생 에너지 활용도를 개선할 뿐 아니라 그리드 안정성을 강화하고자 한다. 연구 결과는 강화 학습을 기반으로 한 수요 반응 전략이 그리드 유연성을 향상시키고 재생 에너지 통합을 촉진하는 데 효과적이라것을 보여준다.

수명감소를 고려한 주파수 조정용 에너지저장장치의 최적 클러스터링 (Optimal Clustering of Energy Storage System for Frequency Regulation Service Considering Life Degradation)

  • 김욱원;김진오
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.555-560
    • /
    • 2016
  • Recently, many countries have placed great attention on energy security and climate changes. Governments are promoting the construction of renewable energy projects with regulatory support in Korea. Despite an increasing penetration of renewable resources, however, the photovoltaic and wind power are underutilized due to the endemic problems such as difficulties of output control and intermittent output. The Energy Storage System (ESS) is proposed as a good solution for solving the problems and has been studied in both the private business and the government. However, because of inefficient aspects, the research has been carried out for improving high costs and a small capacity. In addition, the ESS is currently installed for using only one purpose which is frequency regulation or transmission congestion relief such that has an economic limitation. Therefore, methods which are becoming economically justifiable to increase the penetration of the ESS is required. Thus, this paper presents in terms of operation efficiency to improve economic feasibility of the ESS currently used. mainly, there are two aspects for the operation efficiency. Firstly, it is intended to improve the utilization rate through a process that can utilize the ESS for various purposes. It is necessary to be able to use for other purposes by classifying and clustering for increasing the efficiency of availability. The clustering method is proposed to conduct the grouping the ESS. Especially, it is proposed to utilize ESS for frequency regulation service which is the one of ancillary services in the power system. Through case studies, it is confirmed to secure the necessary resources by clustering small size ESS.

Feasibility Study of High-Efficiency Ground Heat Exchanger using Double U-tube through a Real-Scale Experiment

  • Bae, Sangmu;Kim, Jaemin;Nam, Yujin
    • KIEAE Journal
    • /
    • 제17권4호
    • /
    • pp.33-39
    • /
    • 2017
  • Purpose: The use of renewable energy system is essential for building energy independence and saving energy consumption in the building sector. Among renewable energy technologies, ground source heat pump(GSHP) system is more energy-efficient and environmental-friendly than other heat source systems due to utilize stable ground heat source. However, the GSHP system requires a high initial installation cost and installation space in limited urban area, so it is difficult to have superiority in the market of heat source system. Therefore, it is necessary to develop the installation method of low-cost and improve system performance. This paper aims to evaluate the performance of double u-tube ground heat exchanger(GHX) and verify system feasibility through real-scale experiment. Method: In this study, the real-scale experiment of vertical closed-type GSHP system was conducted using double u-tube GHX and high-efficiency grout. Through the verification experiment, heat source temperature, heat exchange rate(HER) and seasonal performance factor(SPF) were measured according to the long-term operation. In addition, the feasibility analysis was conducted comparing to the single u-tube system. Result: In the results of experiment, average HER was 136.27 W/m and average SPF was 5.41. Furthermore, compared to the single u-tube, the installation cost of the developed system could be reduced about 70% in the same heating load condition.

이중투과체 및 VIP복합 단열재 적용 평판 집열기의 성능 향상에 대한 연구 (Research on Improvement of Efficiency in Flat Plate Solar Collector by Using Double-Wall Glazing and VIP Insulation)

  • 이두호;장한빈;김용학;도규형;이광섭;류남진
    • 설비공학논문집
    • /
    • 제28권11호
    • /
    • pp.458-465
    • /
    • 2016
  • The purpose of this research is to improve the thermal effiency of solar collector and to quantitatively analyze its performance. Solar thermal systems have been limited to water heating systems mainly using low-temperature range. However, through diverse developments, the application has been extended to medium- and high-temperature fields such as solar heating, solar air conditioning, and solar thermal industrial process. Among the diverse research, this research is specially focusing on enhancement of the thermal performance by minimizing the heat loss coefficient of flat plate solar collectors. In order to do it, a front-side glazing material and a back-side insulation material with high insulated structure is proposed and based on computational analysis, the performance of energy collecting volume of the proposed solar collector is analyzed. The research shows that the proposed structure has the excellent performance at medium- and high-temperature range. therefore, it is expected that the proposed structure can easily replace existing technologies.

300MW 태안 IGCC 플랜트 종합성능 특성 (Overall Performance characteristic for 300MW Taean IGCC Plant)

  • 김학용;김재환
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.129.2-129.2
    • /
    • 2010
  • As a part of the government renewable energy policy, KOWEPO is constructing 300MW IGCC plant in Taean. IGCC plant consists of gasification block, air separation unit and power block, which performance test is separately conducted. Overall performance test for IGCC plant is peformed to comply with ASME PTC 46. Major factors affected on the overall efficiency for IGCC plant are external conditions, each block performance(gasification, ASU, power block), water/steam integration and air integration. Performance parameters of IGCC plant are cold gas efficiency, oxygen consumption, sensible heat recovery of syngas cooler for gasification block and purity of oxygen, flow amount of oxygen and nitrogen, power consumption for air separation unit and steam/water integration among the each block. The gas turbine capacity applied to the IGCC plant is 20 percent higher than NGCC gas turbine due to the low caloric heating value of syngas, therefor it is possible to utilize air integration between gas turbine and air separation unit to improve overall efficiency of the IGCC plant and there is a little impact on the ambient condition. It is very important to optimize the air integration design with consideration to the optimized integration ratio and the reliable operation. Optimized steam/water integration between power block and gasification block can improve overall efficiency of IGCC plant where the optimized heat recovery from gasification block should be considered. Finally, It is possibile to achieve the target efficiency above 42 percent(HHV, Net) for 300MW Taean IGCC plant by optimized design and integration.

  • PDF

A simple 3-phase inverter topology to improve power conversion efficiency

  • Phan, Dang-Minh;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2014년도 추계학술대회 논문집
    • /
    • pp.25-26
    • /
    • 2014
  • Renewable energy sources such as wind and solar power are free and can be easily harvested everywhere. However, one of the biggest problems when using this kind of energy source is how to increase the efficiency of power conversion system. This paper introduces a modified 3-phase inverter in order to increase the power conversion efficiency. By adding 3 bi-directional switches at output of the inverter, the current flow back DC source during zero state is prevented to minimize leakage current, so that the efficiency of whole system is increased. The proposed topology also improves the power quality to satisfy the total harmonics distortion (THD) requirement. In order to verify the effectiveness of the proposed topology, simulation results are carried out using Simulink in MATLAB.

  • PDF

소수력 성능향상 사례연구 (An Application Case Study of Improving Performance of Small Hydro-power)

  • 김상균;박지군;이연주
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.165.1-165.1
    • /
    • 2011
  • In this paper, it is intended to study about deferences of design and operation properties between large and small hydro-power house's turbine which type is reaction. In generally, turbine of large hydro-power has a more safe and effective energy output mechanisms than small hydro-power's because the turbine of small hydro-power is more sensitive to hydraulic losses. But, it is more effective for the all energy market to improve the capability and efficiency of small hydro-power in the present status of increasing construction of small hydro-power than large hydro-power. Therefore, we intend to investigate and introduce the way to enhance the efficiencies of reaction turbine adopted to small hydro-power.

  • PDF

열에너지 저장 암반공동의 형상 및 레이아웃 설계 가이드라인 (Guidelines for Designing the Shape and Layout of Thermal Energy Storage (TES) Rock Caverns)

  • 박도현;박의섭
    • 터널과지하공간
    • /
    • 제25권2호
    • /
    • pp.115-124
    • /
    • 2015
  • 열에너지 저장은 고온 또는 저온의 잉여 열에너지를 저장하여 수요 발생 시 사용하기 위한 기술로서 에너지의 수요와 공급 사이의 불균형을 해소하고, 이를 통해 에너지 시스템의 효율을 향상시킬 수 있다. 특히 간헐적인 신재생에너지 자원을 열에너지 형태로 변환하거나 저장함으로써 에너지 믹스에서 신재생에너지의 비중을 제고할 수 있으며, 이를 위해서는 열에너지 저장 장치와의 조합이 반드시 필요하다. 지하 암반공동을 이용한 열에너지 저장은 높은 건설비용이 수반되어 그 활용이 제한적이지만, 대규모의 열에너지를 장기간 저장할 수 있는 가장 현실적인 방법이다. 또한 기후조건에 따라 외부로의 열손실이 영향을 받는 지상의 열저장소와는 달리, 열저장 지하 암반공동은 장기 운영 시 주변 암반의 히팅에 따른 열손실의 감소를 기대할 수 있다. 본고에서는 열저장 암반공동의 형상 및 다중배치 설계 시 고려해야 할 주요 인자들을 소개하고, 저장공간의 설계에 대한 가이드라인을 제안하였다.

직렬형 하이브리드 자동차에서의 폐열 회수에 대한 연구 (Study on the Heat Recovery System in Series Hybrid Electric Vehicle)

  • 정대봉;용진우;김민재;김형준;민경덕
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.95-95
    • /
    • 2010
  • In recent, there are tremendous requirements to improve the fuel economy of vehicle. For satisfaction of requirements, Hybrid Electric Vehicle or other technologies are suggested and implemented. However, it should be noted that almost 35% energy loss is occurred in the shape of exhaust gas as ever. For increase the efficiency of vehicle, it is certain that the exhaust gas energy should be recover, and generate energy. In previous studies, the technologies such as turbo-compound, thermoelectric and rankine cycle are suggested to recover the exhaust heat energy in vehicle. But, they focus on the conventional vehicle or parallel Hybrid Electric Vehicle. Series Hybrid Electric Vehicle has advantage that the engine and drive shaft are de-coupled. It means that the engine can be operated in high efficiency area regardless with vehicle states. Therefore, if rankine cycle is applied to series hybrid electric vehicle, operating condition of that becomes almost steady. So, in this study, theoretical analysis on the efficiency of rankine cycle applied to series hybrid electric city bus is carried and the energy recovered from exhaust gas during vehicle drive cycle is calculated.

  • PDF

유기랭킨사이클 작동과 관련한 부품개선에 의한 사이클 효율변화에 대한 영향 (Effect on the Cycle Efficiency by Using Improved Parts for Operating the ORC)

  • 조수용;조종현
    • 한국유체기계학회 논문집
    • /
    • 제19권6호
    • /
    • pp.34-42
    • /
    • 2016
  • The organic Rankine cycle (ORC) has been used to convert thermal energy to mechanical energy or electricity. The available thermal energy could be waste heat, solar energy, geothermal energy, and so on. However, these kinds of thermal energies cannot be provided continuously. Hence, the ORC can be operated at the off-design point. In this case, the performance of the ORC could be worse because the components of the ORC system designed based on a design point can be mismatched with the output power obtained at the off-design point. In order to improve the performance at the off-design point, a few components were replaced including generator, bearing, load bank, shaft, pump and so on. Experiments were performed on the same facility without including other losses in the experiment. The experimental results were compared with the results obtained with the previous model, and they showed that the system efficiency of the ORC was greatly affected by the losses occurred on the components.