• Title/Summary/Keyword: Imprint Lithography

Search Result 121, Processing Time 0.023 seconds

Analysis of Nonniformity of Residual Layer Thickness on UV-Nanoimprint Using an EPS(Elementwise Patterned Stamp) (EPS(Elementwise Patterned Stamp)를 이용한 UV 나노임프린트 공정에서 웨이퍼 변형에 따른 잔류층 분석)

  • Kim Ki-Don;Sim Young-Suk;Sohn Hyonkee;Lee Eung-Sug;Lee Sang-Chan;Fang Lingmei;Jeong Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1169-1174
    • /
    • 2005
  • Imprint lithography is a promising method for high-resolution and high-throughput lithography using low-cost equipment. In particular, ultraviolet-nanoimprint lithography (UV-NIL) is applicable to large area imprint easily. We have proposed a new UV-NIL process using an elementwise patterned stamp (EPS), which consists of a number of elements, each of which is separated by channel. Experiments on UV-NIL are performed on an EVG620-NIL using the EPS with 3mm channel width. The replication of uniform sub 70 nm lines using the EPS is demonstrated. We investigate the nonuniformity of residual layer caused by wafer deformation in experiment with varying wafer thickness. Severely deformed wafer works as an obstacle in spreading of dropped resin, which causes nonuniformity of thickness of residual layer. Numerical simulations are conducted to analyze aforementioned phenomenon. Wafer deformation in the process is simulated by using a simplified model, which is a good agreement with experiments.

PDMS Stamp Fabrication for Photonic Crystal Waveguides (광자결정 도파로 성형용 PDMS 스탬프 제작)

  • Oh, Seung-Hun;Choi, Du-Seon;Kim, Chang-Seok;Jeong, Myung-Yung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.153-158
    • /
    • 2007
  • Recently nano imprint lithography to fabricate photonic crystal on polymer is preferred because of its simplicity and short process time and ease of precise manufacturing. But, the technique requires the precise mold as an imprinting tool for good replication. These molds are made of the silicon, nickel and quartz. But this is not desirable due to complex fabrication process, high cost. So, we describe a simple, precise and low cost method of fabricating PDMS stamp to make the photonic crystals. In order to fabricate the PDMS mold, we make the original pattern with designed hole array by finding the optimal electron beam writing condition. And then, we have tried to fabricate PDMS mold by the replica molding with ultrasonic vibration and pressure system. We have used the cleaning process to solve the detaching problem on the interface. Using these methods, we acquired the PDMS mold for photonic crystals with characteristics of a good replication. And the accuracy of replication shows below 1% in 440nm at diameter and in 610nm at lattice constant by dimensional analysis by SEM and AFM.

Novel Process to Improve Defect Problems for Thermal Nanoimprint Lithography (열 나노임프린트 리소그래피를 위한 패턴의 결함 향상에 관한 실험적 연구)

  • Park, Hyung-Seok;Shin, Ho-Hyun;Seo, Sang-Won;Sung, Man-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.5
    • /
    • pp.223-230
    • /
    • 2006
  • The reliability of imprint patterns molded by stamps for industrial application of nanoimprint lithography (NIL), is an important issue. Usually, defects can be produced by incomplete filling of negative patterns and the shrinkage phenomenon of polymers in conventional NIL. In this paper, the patterns that undergo a varied temperature or varied pressure period during the thermal NIL process have been investigated, with the goal of resolving the shrinkage and defective filling problems of polymers. The effects on the formation of polymer patterns in several profiles of imprint processes are also studied. Consequently, it is observed that more precise patterns are formed by the varied temperature (VT-NIL) or varied pressure (VP-NIL). The NIL (VT-NIL or VP-NIL) process has a free space compensation effect on the polymers in stamp cavities. From the results of the experiments, the polymer's filling capability can be improved. The VT-NIL is merged with the VP-NIL for the better filling property. The patterns that have been imprinted in the merged NIL are compared with the results of conventional NIL. In this study, the improvement in the reliability for results of thermal NIL has been achieved.

Technology for Efficiency Enhancement of Crystalline Si Solar Cell using Nano Imprint Process (나노 임프린트 공정을 이용한 결정형 실리콘 태양전지 효율 향상 기술)

  • Cho, Young Tae;Jung, Yoon Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.30-35
    • /
    • 2013
  • In order to increase cell efficiency in crystalline silicon solar cell, reduction of light reflection is one of the essential problem. Until now silicon wafer was textured by wet etching process which has random patterns along crystal orientation. In this study, high aspect ratio patterns are manufactured by nano imprint process and reflectance could be minimized under 1%. After that, screen printed solar cell was fabricated on the textured wafer and I-V characteristics was measured by solar simulator. Consequently cell efficiency of solar cell fabricated using the wafer textured by nano imprint process increased 1.15% than reference solar cell textured by wet etching. Internal quantum efficiency was increased in the range of IR wave length but decreased in the UV wavelength. In spite of improved result, optimization between nano imprinted pattern and solar cell process should be followed.