• Title/Summary/Keyword: Impller

Search Result 5, Processing Time 0.02 seconds

Optimum Design of a Cross Flow Fan (횡류팬의 최적설계방안)

  • Kim Dong-Hoon;Park Hyung-Koo
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.50-57
    • /
    • 2003
  • Cross-flow fans are widely used in various applications, due to their large capacity of mass flow and size compactness. The flow field of the cross-flow fan is, however, complex and has many design parameters. Thus, the general design guide has not been sufficiently established yet and the design strategies of cross-flow fans have been mostly based on experiments. In the present study, the performance and their two-dimensional flow characteristics are numerically analyzed by using the STAR-CD(commercial computational fluid dynamics code). The simulation is done by varying the several design parameters such as the impeller blade shapes and the gap between the stabilizer and impeller. The computational results are compared with the experimental data at the fan outlet region. Finally, some helpful guides for the optimum design of cross-flow fans are proposed.

A Parametric Study of Aerodynamic Noise in Centrifugal Compresso (원심압축기의 공력소음에 관한 파라미터 연구)

  • Sun, Hyosung;Lee, Soogab;Lee, Jungeun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.129-134
    • /
    • 2005
  • This paper describes the influence of geometric parameters on the noise generation from a centrifugal compressor. From the analysis of noise measurements, it is observed that Blade Passing Frequency noise related to the rotating impeller is more important, and it is focused on the comparison of this discrete frequency noise according to the shape change. Navier-Stokes solver is used to simulate the flow-field of the impeller and the vaned diffuser, and time-dependent pressure data are calculated and Fourier-transformed to perform the near-field noise prediction. The effects of various geometry design variables such as the gap between the impeller and the diffuser, impeller shape variations on the near-field noise distribution are investigated.

Performance Analysis based on Impller Inlet & Outlet Angle for Waterjet (워터제트의 임펠러 입구와 출구 각도에 따른 성능해석)

  • Kang, Min-Kyu;Park, Dong-Jin;Kang, Han-Bin;Lee, Seok-Soon
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.2
    • /
    • pp.27-32
    • /
    • 2011
  • The purpose of this study was to suggest 10 kinds of case and perform Mixed-flow pump optimum design and performance analysis depending on the shape of the impeller for suitable to water jet propulsion system. H20 was applied to the material properties, to analysis conditions for water jet axial impeller 1000 rpm given analysis was performed. Interpretation for each case as a result of speed, pressure, flow rate, calculate the thrust at the Inlet Angle $30^{\circ}$ and Outlet Angle $30^{\circ}$ could see a persistence of optimal performance.

A Numerical Study on an Optimum Design of a Cross-flow Type Power Turbine (CPT) (횡류형 파워터빈의 최적화 설계에 관한 수치해석 연구)

  • Ha, Jin-Ho;Kim, H.C.;Kim, Chul-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3050-3055
    • /
    • 2007
  • A wind turbine is one of the most popular energy conversion systems to generate electricity from the natural renewable energy source and an axial-flow type wind turbine is the most popular system for the electricity generation in the wind farm nowadays. In this study, a cross-flow type turbine has been studied for the application of wind turbine for electricity generation. The target capacity of electric power generation of the model wind turbine developing on the project is 12 volts, 130A/H (about 1.56kW). The important design parameters of the model turbine impeller are the inlet and exit angle of the turbine blade, number of blade, hub/tip ratio and the exit flow angle of the casing. In this study, the radial equilibrium theorem was used to decide the inlet and exit angle of the impller blade and CFD technique was used to have the performance analysis of the designed model power turbine to find out the optimum geometry of the CPT impeller and casing. The designed CPT with 24 impeller blades at ${\alpha}=82^{\circ}$, ${\beta}=40^{\circ}$ of turbine blade angle was estimated to generate 284.6 N.m of indicated torque and 2.14kW of indicated power.

  • PDF

Effect of Microsparged Aeration on Oxygen Transfer Rate and Cell Viability in Mammalian Cell Culture Bioreactor (동물 세포 반응기에서의 초미세 통기법이 산소 전달 속도와 세포 생존율에 미치는 영향)

  • 김정모;장건희;최춘순;김정회
    • Microbiology and Biotechnology Letters
    • /
    • v.29 no.4
    • /
    • pp.240-247
    • /
    • 2001
  • The effect of microsparged aeration in mammalian cell bioreactor on the oxygen transfer rate and cell viability was studied. The microspargers with differ- ent micron-sized pores were used to supply oxygen to the medium. The oxygen transfer coefficients (k$_{L}$a) measured in the bioreactor were markedly increased, which is due to the increase of the contacting area between air bubbles and liquid medium when the pore size of microsparger decreases. When the impellers of two different types (square-pitch marine impeller and $45^{\circ}$ pitched flat blade impeller) were used for agitation, the k$_{L}$a values were slightly higher with the marine impeller than with the blade impeller. The detrimental effect of direct gas sparging with microsparger on mammalian cells was investigated in bubble columns with various air flow rates and different pore sized microspargers. The first-order cell death rate constant ($k_{d}$ /7) was shown to be directly proportional to the air flow rate and inversely proportional to the pore size. During the cultivation of hybridoma cells using microsparger with the pore size of $0.57\mu$m in the mammalian cell culture bioreactor, the continuous sparging caused the cell death and suppressed the cell growth. However, cells grew normally and cell viability was maintained above 90% in the logarithmic phase when the air was intermittently sparked in order to maintain the dissolved oxygen level above 20%.

  • PDF