• 제목/요약/키워드: Implicitization

검색결과 2건 처리시간 0.017초

평면 곡선의 교점 계산에 있어 곡선 특성화, 분할, 근사, 음함수화 및 뉴턴 방법을 이용한 Mix-and-Mntch알고리즘 (A Planar Curve Intersection Algorithm : The Mix-and-Match of Curve Characterization, Subdivision , Approximation, Implicitization, and Newton iteration)

  • 김덕수;이순웅;유중형;조영송
    • 한국CDE학회논문집
    • /
    • 제3권3호
    • /
    • pp.183-191
    • /
    • 1998
  • There are many available algorithms based on the different approaches to solve the intersection problems between two curves. Among them, the implicitization method is frequently used since it computes precise solutions fast and is robust in lower degrees. However, once the degrees of curves to be intersected are higher than cubics, its computation time increases rapidly and the numerical stability gets worse. From this observation, it is natural to transform the original problem into a set of easier ones. Therefore, curves are subdivided appropriately depending on their geometric behavior and approximated by a set of rational quadratic Bezier cures. Then, the implicitization method is applied to compute the intersections between approximated ones. Since the solutions of the implicitization method are intersections between approximated curves, a numerical process such as Newton-Raphson iteration should be employed to find true intersection points. As the seeds of numerical process are close to a true solution through the mix-and-match process, the experimental results illustrates that the proposed algorithm is superior to other algorithms.

  • PDF

IMPLICITIZATION OF RATIONAL CURVES AND POLYNOMIAL SURFACES

  • Yu, Jian-Ping;Sun, Yong-Li
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.13-29
    • /
    • 2007
  • In this paper, we first present a method for finding the implicit equation of the curve given by rational parametric equations. The method is based on the computation of $Gr\"{o}bner$ bases. Then, another method for implicitization of curve and surface is given. In the case of rational curves, the method proceeds via giving the implicit polynomial f with indeterminate coefficients, substituting the rational expressions for the given curve and surface into the implicit polynomial to yield a rational expression $\frac{g}{h}$ in the parameters. Equating coefficients of g in terms of parameters to 0 to get a system of linear equations in the indeterminate coefficients of polynomial f, and finally solving the linear system, we get all the coefficients of f, and thus we obtain the corresponding implicit equation. In the case of polynomial surfaces, we can similarly as in the case of rational curves obtain its implicit equation. This method is based on characteristic set theory. Some examples will show that our methods are efficient.