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IMPLICITIZATION OF RATIONAL CURVES AND
POLYNOMIAL SURFACES

JIAN-PING YU AND YONG-LI SUN

ABSTRACT. In this paper, we first present a method for finding the im-
plicit equation of the curve given by rational parametric equations. The
method is based on the computation of Grobner bases. Then, another
method for implicitization of curve and surface is given. In the case of
rational curves, the method proceeds via giving the implicit polynomial f
with indeterminate coefficients, substituting the rational expressions for
the given curve and surface into the implicit polynomial to yield a ratio-
nal expression % in the parameters. Equating coefficients of g in terms of
parameters to 0 to get a system of linear equations in the indeterminate
coefficients of polynomial f, and finally solving the linear system, we get
all the coefficients of f, and thus we obtain the corresponding implicit
equation. In the case of polynomial surfaces, we can similarly as in the
case of rational curves obtain its implicit equation. This method is based

on characteristic set theory. Some examples will show that our methods
are efficient.

1. Introduction

For curves and surfaces, to transform their parametric equations to the im-
plicit forms is of fundamental importance in geometric modeling, computer
graphics and many methods have been given to do this, see e.g. Sederberg [17],
Sederberg et al. [18], Chung and Hoffman [5], Li [13], Busé (3], Busé et al. [4],
Cox {7, 8], Corless et al. [6], Marco and Martinez [14, 15], Gao and Chou [12],
Wang [23], Sun [21], Yu [25] and references therein. But the different methods
of implicitization belong to three main classes.

The first class of methods is based on classical elimination theory. Resultants
(in one or several variables) are used to compute the implicit equation, the
computation is not a trivial task (Cox et al. [11]) and leads to expressions
spoiled by extraneous factors (Manocha and Canny [16]).
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The second class of methods relies on Grobner bases (Becker and Weispfen-
ning [2], Gao and Chou [12]). The algorithm gives a basis of the ideal spanned
by the system of parametric equations. It is proven that elements of this basis
independent of parameters are the corresponding implicit equations with no
extraneous factor (Cox et al. [10]). Although this method is generally recog-
nized that techniques using Grébner bases are very time and space consuming
in implicitization, we must accept that this method is very important from
theoretical point of view.

The third class of methods for implicitization is based on Mathematics Mech-
anization theory, founded by professor Wu (Wu [24]). This method has been
generally proposed and studied in implicitization (Gao and Chou [12], Li [13])
and other problems (Shi and Sun [19]). Mathematics Mechanization theory,
especially the characteristic set theory, is much more important and useful in
some areas.

In this paper, we assume that the parametrization is proper, i.e., there is
a one to one relation between the points and the parameter values. We first
present an improved method for implicitization of rational curves, this method
is based on Grobner bases. Then we give another method for implicitization
of rational curves and polynomial surfaces which is defined by polynomials in
R[z,y, z]. The basic idea underlying this method is the characteristic set theory
and the usage of principle of indeterminate coefficients of the desired implicit
polynomial to reduce the implicitization problem to solving the system of linear
equations with constant coefficients. Some examples are given to illustrate the
efficiency of our methods.

2. Description of the problem

A parametrization of a geometric object in a space of dimension n can be
described by the following set of parametric equations:

_ Pl(tl,...,tk) Pn(tl,...,tk)
() 2y = oot Dl
Q1(ty, ..., tx) Qn(t,. .., tk)

where t1, . .., tx are parameters and functions P;, Q;,i = 1,...,n are all polyno-

mials. The case n = 2,k = 1 corresponds to plane curves; the casen =3,k =1
corresponds to space curves and the case n = 3,k = 2 corresponds to surfaces.
Our aim is to compute the implicit polynomial equation

(%) F(zy,...,25) =0
of the geometric object described by the parametric equations (*), which sat-
isfies
F(P](tl,...,tk) Pn(tl,...,tk))zo
Ql(tl, e ,tk)’. T Qn(tly- .. ,tk)

for all values of parameters t1,.. ., t.
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3. Improved method for implicitization of curves

3.1. Grobner bases

Grobner bases is very useful to devise alternative generators for an ideal,
and several excellent books have been written on Grobner bases (W. Adams et
al. [1], D. Cox et al. [9]).

Let k be any field, e.g., the rational numbers field, Q, the real numbers field,
R, or the complex numbers field, C. We will denote the set of power products
by

™ = {xfl cxPnB e N = 1,..,,n}

and denote z7* - - - £%" by 2%, where a = (a1, ..., a,) € N*. We choose a term
order “>” on k[z1,...,%y], then for all f € k[xy,...,2z,], with f # 0, we may
write
f=a12° + ax®* + - - + apz™”

where 0 # a; € k,z* € T", and % > 2?2 > ... > % . We will always try to
write our polynomial in this way. We define:

e Ip(f) = x*, the leading power product of f;

e le(f) = a1, the leading coeflicient of f;

e lt(f) = a1z, the leading term of f.
We also define Ip(0) = lc(0) = 1t(0) = 0.

Definition 3.1. A set of non-zero polynomials G = {g1,...,¢:} contained in
an ideal I C k{z1,...,3y], is called a Grobner basis for I if and only if for all
f € I such that f # 0, there exists 7 € {1,...,t} such that Ip(g;) divides Ip(f).

Definition 3.2. Let PS = {p1,..., pm} be a set of polynomials, where p; €
R[z1,...,2n]. Then V(PS) denote

V(PS) ={(z1,...,2n) € R"| pi(®1,...,2,) =0, i =1,...,m}.
3.2. Method

In this section, we will mainly discuss the implicitization for rational para-
metric plane curve and space curve. We first deal with the rational parametric
plane curve.

In the general situation of rational parametric plane curve, with the term
order t > x > y, we have
" LB P

Qu1(t)’ Q2(t)

where P;(t), Q;(t) are polynomials in R[¢], 1 =1,2.

Theorem 3.3. For the above parametrization (1) of plane curve, if P; and Q;
are coprime © = 1,2, then we have that

: _h@® RO _ o _ :
) v(x o0 QQ(t>>—V(Q1(t) Pi(), Qa(t)y — Pa(t))




16 JIAN-PING YU AND YONG-LI SUN

(ii) Let I = (Q1(t)z — Pi(t),Q2(t)y — Pa(t)) be an ideal.
Then we have that V(I1) is the smallest variety containing

n(v(e- 29,203

where I = I R[z,y], m1 is the projection map
T R3 — R?
(a1,a2,03) +— (a2,a3)

Proof. (i) Clearly we have that
_R) - B(t) o B
V(o= S o) €V (@it — A0, Qaltly— Poe).
For any (tg, %o, %0) € V(Q1(t)x — Pi(t), Q2(t)y — P2(t)), we have
(2) Q1(to)zo — Pi(to) = 0, Q2(to)yo — Pa(to) =0.

So Q1 (to) # 0. Otherwise, Q1(to) = 0, from (2) we have Py(to) = 0, thus Q1 (¢)
and P (t) have the common divisor (¢ — o), which is in contradiction with that
Py(t) and Q:(t) are coprime. Therefore Q(tp) # 0. Similarly, Q2(to) # 0. So

that Pt Py(t)
) (T h(t
Ql—(t)’y—Qz(t))'

(to,xo,y0) €V (95 -

For any (to, Tg,yo), we then have

Pi(?) Py(t)
v (x -2, -2 (t)) 2V (@:(t)e — Pi(t), Qa(t)y — Pa(t)).

Thus

Pt) P\ _ o )
v <x - Ql(t),y Qz(t)) =V (Ql(t) Pl(t),Qz(t)y Pg(t)) .

(ii) By the Closure Theorem (see Cox et al. [10]), we know that V(I;) is
the smallest variety containing

T (V (Qi(t)z — Pi(t), Q2(t)y — P2(2))) -
From (i) we have that

(V@002 ~ A0, Qalow — (o) =i (v (- 220y - 20,

Thus V(1) is the smallest variety containing
P (t) P (t) ) >
m{Viz— Y — .
1 ( ( QY Qa)

Pi(t) Py(t)

If

) =00 VT 2.0
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but P;(t) and Q;(t) are not coprime 7 = 1,2. We can first find the greatest
A1) y= L 5(t)
Qu(t)’ Q2(t)

, where p;(t) and g;(t) are coprime and

common divisor d;(t) of P;(t) and Q;(t), so that « = can

pi(t) _ pa(t)
MO0

pi<t)di(t) = .Pi(t>, qi(t)di(t) = Qi(t),i = 1,2

be simplified to x =

satisfy

Let
I={q(t)z — p1(t), g2(t)y — p2(t))
be the ideal generated by polynomials q;(t)z — p1(t), g2(t)y — p2(t), and

Il = ImR[l’,y],
ES = {(z(t1),y(t))| t1 € V (d1(t)d=(2))} ,
which contains finite points in Rz, y]. o

Definition 3.4. Let V; be a variety. If Vj is the smallest variety satisfying
p1(t) pa(t) ))
m|Vix— , Y= C W,
' ( ( a7 a2

(oo B B s

Then we call V; the implicitization variety with respect to parametrization (3).

and

Corollary 3.5. For the above parametrization (3) of plane curve. If P;(t) and
Qi(t) are not coprime ¢ = 1,2, then we have that V(I1) is the implicitization
variety with respect to (3).

Proof. Since d;(t) is the greatest common divisor of P;(t) and Q;(t), then
pi(t)di(t) = Pz'(t), qi(t)di(t) = Qi(t), 1= ]., 2.

We have
Pi(t) _ pa(t)
Q) a@)
y = Py(t) :p2(t)
Q(t)  a(t)
So that

V(e gl o) v (- ) -

By Theorem 3.3, we get that V(I;) is the smallest variety containing

n(v(z-2Gv-23))
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thus V(I,) — ES is the corresponding set containing

n(v(e- 24, 20)),

In the above, we mainly deal with the implicitization for rational parametric
plane curves, the following is the case of rational parametric space curves. With
term order t >z > y > z, let

_B® _ B _ B
@ T T @0 T %0
where P;(t), Q;(t) are polynomials in R[t], i =1,2,3. O

Theorem 3.6. For the above parametrization (4) of space curve, if P; and Qs
are coprime t = 1,2, i(’;,)then we hc;ve that ®
. Pt Pz(t P(t
O V(e G o o
=V (Qi(t)z — Pi(t), Q2(t)y — P2(t), Qa(t)y — P5(t));
(i) Let I =(Q1(t)z — Pi(t), Q2(t)y — P2(t), Qs(t)y — Ps(t)).
Then we have that V(I1) is the smallest variety containing

Pi(t) Py(t) Py(t) ))
m{V]iz— Y — JZ— ,
% ( Q0! Q" @
where I = INR[z,y, 2], m is the projection map
T ! Rt — RS
(a1,02,03,04) — (a2,a3,a4)

Proof. (i) Clearly we have that
_RA) B . Ps(t)
V(= G@ - e on)
C V(@i(t)z — A (1), Q2(t)y — (1), @s(t)z — Ps(t)) .-

For any
(to, %0, Y0, 20) € V(Q1(t)z — P1(t), Q2(t)y — Pa(t), Q32(t) — Ps(t)),
we have
(3)  Qi(to)zo — Pi(to) =0, Q2(to)yo — Pa(to) = 0, Q3(to)z0 — P3(2)-

So Q1(to) # 0. Otherwise, Q1 (to) = 0, from (5) we have P;(to) = 0, thus Q1 (t)
and P;(t) have the common divisor (¢t — tp), which is in contradiction with the
fact that P;(t) and Q1 (t) are coprime. Similarly, Q2(to) # 0, Q3(to) # 0. So

that
X0 _amz_&w>
a0 Q)T e:0)

(to, 0, Y0,20) €V <:c -
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For any (to, %o, Yo, 20), we have
(0 B(t) | B)
V(e o om ad)
2 V{(Qi(t)x — Pi(t), Q2(t)y — Pz(t), Q3(t)z — Ps(t)).

Thus

Py (t) Py (t) Ps(t)
Y ("""" OO Qs(t))
= V(Q1(t)z — Pi(t), Q2(t)y — Pa(t), Qs(t)z — Ps(t) .
(i) By the Closure Theorem [Cox et al., [10]], we know that V(I3) is the
smallest variety containing
™1 (V(@i(t)x — Pi(t), Q2(t)y — Pa(t), Qs(t)z — Ps(t))) -
From (i) we have that

T (V(@1(t)z — Pi(t), Qa(t)y — Palt 7Q3(tZ—P3 1))

- (Ve amr an an))

Thus V(1) is the smallest variety containing

n(v(e- ol o))

If

Pi(t) y = Bt)  B()

a® T 7T @t

P;(t) and Q;(t) are not coprime i = 1,2,3. We can first find the greatest

(6) T =

common divisor d;(t) of P;(t) and Q;(t), so that z = Pl(( ) = 522((?), z=
}Q)z((?) can be simplified to z = ziég, Y= ];;8, z = % where p;(t) and

¢i(t) are coprime and satisfy
pi(t)di(t) = Pi(t), ¢:(t)di(t) = Qi(t),i=1,2,3.
Let

I'=(q:(t)z — pa(t), 2(t)y — p2(t), gs(t)z — p3(t))
be the ideal generated by polynomials q;(t)z — p;(t), g2(t)y — p2(t), g3(t)z —
p3(t)a and

I = IﬂR[m,y,z],
ES = {(z(t1),y(t1), 2(t1))| t1 € V(d1(t)d2(t)d5(t))} -

which contains finite points in R|z,y, 2]. U
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Definition 3.7. Let Vj be a variety. If Vj is the smallest variety satisfying

n(v (=55 - B - ) e

and

n(v(e- 29, 20 .20 ey - ps

Then we call V; the implicitization variety with respect to parametrization (6).

Corollary 3.8. For the above parametrization (6) of space curve. If Pi(t) and
Q:(t) are not coprime i = 1,2,3, then we have that V (I1) is the implicitization
variety with respect to parametrization (6).

Proof. For d;(t) is the greatest common divisor of P;(t) and Q;(t), and

pi(t)di(t) = Pi(t), qi(t)di(t) = Qs(t),4=1,2,3.

We have
. = bl _m@)
Q1(t)  au(t)
y = P(t) _ pa(t)
Q:2(t)  qa(t)’
Y O 10
Qs(t)  as(t)’
So that

TGN YO Y0)
V@ a®Y Q) %w)

_ w_:Dl(t) _ pa(t) Z_P3(t) _
‘V< a®’?” ui) %m) B

By Theorem 3.6, we get that V(I;) is the smallest variety containing

o (V (a:— n@) pz(t)’z_ P3(t)))’

o’ " )

and thus V(I1) — ES is the corresponding set containing

n(v(e- G- 0 o)




IMPLICITIZATION OF RATIONAL CURVES AND POLYNOMIAL SURFACES 21

3.3. Examples
In this section, we will present some examples to illustrate our method.

Example 3.1. For an example of how our method works, let us look at the
1— ¢

circle in R?, which is given by the rational parametrization ¢ = st Yy =

2t
1+4¢2°
Because 1 — t? and 2t are coprime with 1 + ¢? respectively, then we need to
determine the ideal
I={1+#)z— (1—13),(1+ %)y —2t).
Using lex order with ¢t > z > y, a Grobner basis for I is given by
g =y+zt -1,
g2 =z —1+yt,
g3 =—y-tat+t.
The Elimination Theorem tells us that I; = I\ R[z,y] = {g1), and thus by

Theorem 3.3, V(g1) is the smallest variety containing the above rational para-
metric circles, then ¢g; = 0 is exactly the implicit equation of the circle.

1+ 2¢2 (1+6)(1 + %)
Example 3.2, z = Tie y= o

For ideal
IT={1+tHr — (1423, (1+ 2y — 1 +t)(1 + 1)),
using lex order with ¢ > x > y, we have its Grobner basis given by
g1 = 2z — 3+ 23y? — 222y — 2y%2? + 4y,
g2 =t—yx+1.
Then the corresponding implicit equation is g; = 0.
Example 3.3. z =t*+1, y=t3+1, 2 =t>+2.
For ideal
I=(x—t*—1y—t3—1,2-t>-2),
using lex order with ¢ > & > y > 2z, we have its Grobner basis given by
g =1y -2y — 234622 -122+9,
go=x—5— 22+ 4z,
gz =2t—2t—y+1,
ga=—2°+4z+yt—t—4,
g5 = —2z+t2+2.
By Theorem 3.6, the corresponding implicit equations are g1 =0, g, = 0.

-1
Example 3.4. 2 = %2, y=t.
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For the ideal (x — (t + 1),y — t), using lex order with ¢t > = > y, we have its
Grobner basis given by
g=-y+tzr-1,
g2 =Y+t
Then we have I = {g1). For corresponding d,,dy defined as the above are t —1
and 1 respectively, from Corollary 3.8, we know that V(I;) — {(z = 2,y = 1)}
is the smallest set containing

(v (- 200D )

Thus the corresponding implicit equation is g; = 0 except the special point set

{2 1)}
4. Implicitization via characteristic set
4.1. Characteristic set

In this section, we will first present some fundamental concepts and theories
of characteristic set. All the details can be found in the related book (Wu [24]).
Let k be the basic field of characteristic 0, k[z1,...,z,] is the polynomial
ring over k with independent indeterminate x1,...,Zp,, and 1 < 2 <+ -+ < Zp.
For the set AS ={A,| j=1,...,r}, let
Aj= ajox +a31me e + Qjm;-
FO<iz < - <ip,lety; = Zi;, other x; can be denoted by uy,. o Ug,d+r =
n. Then
Aj = ajoy;"j + aj1’y;nj_1 + -4+ ajmja
where a;; € k[u1,...,uq4,¥1,..-,Yj—1], and ajo is called the initial of polynomial
A;. For any j > i, if deg,, (A;) < deg,, (4;), then we call AS an ascending set.
We suppose that ko = k(u,...,us) an extension field of field & by adjoining
transcendental elements u;,...,u4. For the ascending set AS = {4;| j =1,
.,7},if Ay = A; is irreducible when it is considered as a polynomial in koly:],
and 1 is a zero point of Ay, i.e., A;(m) = 0. We denote ko(m:1) by k1, we let
ni—1 be a zero point of polynomial A;_, i.e., A;_ 1(ni—1) = 0, similarly, we also
denote k;—2(n;~1) by ki—1. For i <r, we have

A= Ai|y1=n1,--~, Yi—1=Ni—1
is irreducible when it is considered as a polynomial in k;_1[y:], then we call the
ascending set AS an irreducible ascending set.

Definition 4.1. For a set PS of polynomials, if an ascending set AS satisfies

(1) Remdr(PS/AS) = 0, which is the remainder set of PS with respect to
AS;

(2) V(PS) c V(AS), where V(PS) and V(AS) are zero sets of PS and
AS respectively.

Then we call AS a characteristic set of the set PS.
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Lemma 4.2. Let PS be a finite set of polynomials. Then
V(PS) = LJVASHP)

where I P; is the initial product of the corresponding characteristic set AS;, and

V(AS;/IP;)) =V (AS;) - V(IP).
4.2. Characteristic set method for implicitization of rational curves

In this section, all the discussions are over the field R, which is the set of all
real numbers. OQur method works for rational plane curves.
Let a rational plane curve be defined by the parametric equations

_P@) Q@)
(7) €T = ma Y= %,
where P(t), A(t); Q(t), B(t) belong to the polynomial ring R[¢], and

ged(P(t), A(t)) = ged(Q(), B(t)) = 1.
Let the implicit polynomial of the above curve be f in z,y, and n, = deg(f, z),
ny = deg(f,y). By Theorem 2 in Marco and Martinez [14], we know

ny = max{deg(Q(t),t),deg(B(¢),t)}, n, = max{deg(P(t),t),deg(A(t),t)},
and the implicit polynomial f has the form

f= Zzzumxy

=0 j=0

Therefore, we has formed the implicit polynomial f of correct degree n, in z,
and ny in y with (ny +1)(n, +1) indeterminate coefficients, i.e., the coefficients
u;; are to be determined. Substituting the expression (7) into f and expanding
the result, we get the following rational expression

8 U4
(8) ZZ JA(t zB(t)J
i=0 =0
where both g and h are polynomials in the parameter t. Let L be the set of
all the nonzero coefficients of g considered as a polynomial in ¢t. Then every

element of L is a homogeneous linear polynomial in the indeterminate u;; with
rational coefficients.

Now, we can solve the system of linear equations
(9) E=0, EclL.

For u;; as unknowns can be obtained by Lemma 4.2. Clearly this homogeneous
system always has the trivial solution u;; = 0 for all ¢,5. But the curve de-
fined by (7) has an implicit equation if and only if the linear system (9) has
a nontrivial solution for u;, i.e., when the general solution u;; = @;; of (9) is
found and nontrivial, then an implicit polynomial can easily be obtained by
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substituting 4;; into f. Combined with theories in D. M. Wang [23], we have
the following algorithm.

Algorithm 4.2.3.
P _ Q)
At ' B

ged(P(t), A(t)) = ged(Q(t), B(¢)) = 1

Output: Implicit polynomial F in z,y

Step 1. Substituting (7) into f and simplify it to the expression (8)

Step 2. Get the set L, which is the set of all coeflicients of g in ¢

Step 3. Solve the linear system (9) by Lemma 4.2 to get the general solu-
tion uy; = Uy

Step 4. If all the @;; are zero

Then the curve defined by (7) has no implicit polynomial and exit

Else if %;; are not all zero

Then we obtain f|y,;~a,,

Step 5. If flu,;~a,, has a nonconstant factor F' € R[z, y]

Then F = 0 is the corresponding implicit equation

Else (7) does not define a proper rational curve

Input: Rational parametric equations =z = , where

4.3. Characteristic set method for implicitization of polynomial sur-
faces

Our method not only works efficiently for rational curve but also for poly-
nomial surface in R® space, which is defined by a polynomial in R[z,y,z]. A
brief discussion of the case of surfaces will be given in this section.

A polynomial surfaces can be defined by the parametric equations

(10) z = P(s,1), y= Q(s,t), z = R(s,t),

where P(s,t),Q(s,t), R(s,t) belong to the polynomial ring R[s, ¢}, and di, da, d3
are the total degree of them respectively. Let the implicit polynomial of the
above curve be f in z,y, z, and n, = deg(f,z),ny = deg(f,y),n. = deg(f, 2).
By Proposition 3 in Marco and Martinez [15], we have that

Ny = d2d3, Ny = d1d3, Ny = dldz.

The implicit polynomial f has the form

Ny Ty Ny

f = Z Z Z uijkmiyjzk.

=0 j=0 k=0

Therefore, we has formed the implicit polynomial f of correct degree ng in z,
ny in y and n, in z with (n; + 1)(ny + 1)(n, + 1) indeterminate coefficients,
i.e., the coefficients u;; are to be determined. Substituting the expression (10)
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into f and expanding the result, we get

ne Ty Ny

(11) 9= 3 uinP(s,1)'Q(s, t) R(s, 1)",

i=0 j=0 k=0

where both g is a polynomial in the parameters s,t. Let L be the set of all the
nonzero coefficients of g considered as a polynomial in s,t. Then every element
of L is a homogeneous linear polynomial in the indeterminate u;;; with rational
coefficients.

Now, we can solve the system of linear equations
(12) E=0, EeclL.

For w5, as unknowns can be obtained by Lemma 4.2. Clearly this homogeneous
system always has the trivial solution u;jr = 0 for all 4,3, k. But the curve
defined by (10) has an implicit equation if and only if the linear system (12)
has a nontrivial solution for w;jx. i.e., when the general solution u;;; = ;% of
(12) is found and nontrivial, then an implicit polynomial can easily be obtained
by substituting @;;; into f. Combined with theories in D. M. Wang [23], we
have the following algorithm.

Algorithm 4.3.4.

Input: Rational parametric equations x = P(s,t), y = Q(s,t), z = R(s,t)

Output: Implicit polynomial F' in x,y, 2

Step 1. Substituting (10) into f and simplify it to the expression (11)

Step 2. Get the set L, which is the set of all coeflicients of g in s,

Step 3. Solve the linear system (12) by Lemma 4.2 to get the general
solution Uijk = ﬂ,‘jk

Step 4. If all the @;;; are zero

Then the curve defined by (10) has no implicit polynomial

Else if ;55 are not all zero

Then we obtain the implicit polynomial f|y, ;. =,

Step 5. If flu, ,=a,;, has a nonconstant factor F € Rz, y, 2|

Then F' = 0 is the corresponding implicit equation

Else (10) does not define a proper rational curve

4.4. Examples

5t 5t
Example 4.1. x = 5 y= 45

Let

5 5
(13) f = Z Z Uijl‘iyj.

i=0 j=0
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According to the algorithm 4.3.3 and using the package wsolve of D. K.
Wang, we can easily get

AS = {u007 Us3, Us4, UB5, U3, U3s, U40, U41, U42, U43, U44q, U45, 5“50 + U22, U51,
U52, U3d, U0L, 402, Y03, Y04, DUps + Uz, U10, U11, U12, U13, U14, U15, U20,
U21, U23, U24, U25, U0, U31, U32}-

For the coefficients of every element of the linear system are all nonzero
rational numbers, we get

{uoo =0, us3 =0, usqg =0, uss =0, uzz =0, uzgs =0, ugo =0, ugy =0,
ug2 =0, ug3 =0, ugg =0, ugs = 0, uga = —duso, us1 =0, us2 =0,
u3g = 0, uor = 0,up2 = 0, uo3 = 0, uos =0, uzz = —bugs, uio = 0,u11 =0,
u12 =0, u13 =0, u14 =0, w15 =0, uz0 =0, ug1 =0, uz3 =0, upa =0,
ugs =0, uzp =0, uz; = 0,uzz =0}.
Substituting them into (13), we get that
f = ugs(2® = 52%y° + °).

Thus from D. M. Wang [23], we know that the corresponding implicit equation
is
x® —52%y% + 95 = 0.

Example 4.2. =1+ s, y =12+ 2st, z =13 + 3st2.

Let
6 3

2
(14) f= ZZZwiyjzk.

i=0 j=0 k=0
According to algorithm 4.3.4 and using the package wsolve of D. K. Wang,
characteristic set AS can be readily obtained

AS = {40002 — %301, %010, U011, U012, U020, U021, U022, —U301 T %030, U031, U032,
U100, %101, —%401 + 4U102, U110, Uo01a1, Ue00, dUs20 + U601, Up02; UE105
Ug11, U612, Us20, Ue21, U622, U630, U631, U632, U000, 2U111 + U301, U112,
U120, U121, U122, U130 — U401, U131, U132, U200, U201, —Us01 + 4U202, U210,
3uaor + 2ug11, U212, 3user + 4u220, U1, U222, U230 — U501, U231, U232,
U300, U520 + U302, U310, 2u311 + SUs01, Us12, 4U3zo + 3401, Us21, U322,
dusag + 3u33p, U331, U332, U400, U402, Ua10, —2Us20 + Ua11, U412,
duyp + 3usp1, U421, U422, U430, U431, U432, U500, U502, U510, U511, U512,
U521, U522, U530, U531, u532}-

Similarly as in Example 1, we have
{020 = 0, ug21 = 0,u100 = 0, u101 = 0,u321 = 0,up31 = 0, uo22 = 0, u101 = 0,

ugza = 0,u110 = 0, uppr = 0, ugoo = 0, u331 = 0, ugo2 = 0, ug10 = 0, us32 = 0,
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uszz = 0,ug11 = 0, us01 = 4u202, us12 = 0, %102 = U102, U202 = U202,

U302 = U302, U220 = —3Uga2, U111 = —6ugoz, U230 = duapz, U13p = 4U102,
ug01 = 4u102, Uag0 = —3Uz02, Usze = —3U302, U320 = —3U102, U211 = —6u102,
ug11 = —6usgg, usor = 4usoz, Uszo = 4uso2, uz11 = —6uzo2, Uoso = 4Uoo2,

u301 = 4u002, U002 = Uo02, Us20 = 0, Uso0 = 0, ug21 = 0, U402 = 0,u232 = 0,
ues1 = 0, ugzo = 0, ug2z = 0, ue32 = 0, upoo = 0, u300 = 0,410 = 0,u121 =0,
u120 = 0,u115 = 0, U122 = 0,u131 = 0, ug12 = 0, u332 = 0,u200 = 0, u201 = 0,
u421 = 0,uz10 = 0, ug20 = 0, u210 = 0,u212 = 0, ug30 = 0,u431 = 0,uz13 =0,
ug32 = 0,u221 = 0, us00 = 0, U200 = 0, uso2 = 0, u231 = 0,u510 = 0, u511 = 0,
up11 = 0,u010 = 0, us12 = 0, uo12 = 0, us21 = 0, us31 = 0, us22 = 0, us30 = 0}.

Substituting them into (14}, we have that

f=(2+4y% - 6axyz — 32%% + 4$32)(’LL302$3 + U022 + U102 + Ugo2)-

Thus from D. M. Wang [23], we obtain the corresponding implicit equation
22 4+ 4y% — bzyz — 3c%y? + 4232 = 0.

5. Conclusion

In this paper, we introduce an improved method for implicitization based
on Grobner bases and another method for implicitization via Characteristic
Set. At the same time, we give some examples to illustrate our methods’
efficiency. For the future work, we will mainly focus on the speed and significant
improvement of our algorithms.

Acknowledgement. The authors are grateful for the referee’s valuable com-
ments and suggestions on an earlier draft of the present paper.
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