• Title/Summary/Keyword: Implicit numerical method

Search Result 423, Processing Time 0.018 seconds

Alternative analytic method for computing mean observation time in space-telescopes with spin-precession attitude motion

  • Juan, Bermejo-Ballesteros;Javier, Cubas;Francisco, Casas;Enrique, Martinez-Gonzalez
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.449-462
    • /
    • 2022
  • Space-telescopes placed in the Sun-Earth second Lagrange point (L2) observe the sky following a scan strategy that is usually based on a spin-precession motion. Knowing which regions of the sky will be more observed by the instrument is important for the science operations and the instrument calibration. Computing sky observation parameters numerically (discretizing time and the sky) can consume large amounts of time and computational resources, especially when high resolution isrequired.This problem becomesmore critical if quantities are evaluated at detector level instead of considering the instrument entire Field of View (FoV). In previous studies, the authors have derived analytic solutions for quantities that characterize the observation of each point in the sky in terms of observation time according to the scan strategy parameters and the instrument FoV. Analytic solutions allow to obtain results faster than using numerical methods as well as capture detailed characteristics which can be overseen due to discretization limitations. The original approach is based on the analytic expression of the instrument trace over the sky. Such equations are implicit and thusrequiresthe use of numeric solversto compute the quantities.In this work, a new and simpler approach for computing one ofsuch quantities(mean observation time) is presented.The quantity is first computed for pure spin motion and then the effect of the spin axis precession is incorporated under the assumption that the precession motion is slow compared to the spin motion.In this sense, this new approach further simplifies the analytic approach, sparing the use of numeric solvers, which reduces the complexity of the implementation and the computing time.

Semi-rigid Elasto-Plastic Post Buckling Analysis of Space Frame by Using the Explicit Arc-Length Method (명시적 호장법을 이용한 공간프레임의 반강접 탄소성 후좌굴 해석)

  • Lee, Kyoung-Soo;Han, Sang-Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.535-546
    • /
    • 2011
  • In this paper, semi-rigid elasto-plastic post-buckling analysis of a space frame was performed using various explicit arc-length methods. Various explicit arc-length methodsand a large-deformation and small-strain elasto-plastic 3D space frame element with semi-rigid connections and plastic hinges were developed. This element can be appliedto both explicit and implicit numerical algorithms. In this study, the Dynamic Relaxation method was adopted in the predictor and corrector processesto formulate an explicit arc-length algorithm. The developed "explicit-predictor" or "explicit-corrector" were used in the elasto-plastic post-buckling analysis. The Eulerian equations for a beam-column with finite rotation, which considers the bowing effects, were adopted for the elastic system and extended to theinelastic system with a plastic hinge concept. The derived tangent stiffness matrix was asymmetrical due to the finite rotation. The joint connection elements were introduced for semi-rigidity using a static condensation technique. Semi-rigid elasto-plastic post-buckling analyses were carried out to demonstrate the potential of the developed explicit arc-length method and advanced space frame element in terms of accuracy and efficiency.

Development and evaluation of a 2-dimensional land surface flood analysis model using uniform square grid (정형 사각 격자 기반의 2차원 지표면 침수해석 모형 개발 및 평가)

  • Choi, Yun-Seok;Kim, Joo-Hun;Choi, Cheon-Kyu;Kim, Kyung-Tak
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.361-372
    • /
    • 2019
  • The purpose of this study is to develop a two-dimensional land surface flood analysis model based on uniform square grid using the governing equations except for the convective acceleration term in the momentum equation. Finite volume method and implicit method were applied to spatial and temporal discretization. In order to reduce the execution time of the model, parallel computation techniques using CPU were applied. To verify the developed model, the model was compared with the analytical solution and the behavior of the model was evaluated through numerical experiments in the virtual domain. In addition, inundation analyzes were performed at different spatial resolutions for the domestic Janghowon area and the Sebou river area in Morocco, and the results were compared with the analysis results using the CAESER-LISFLOOD (CLF) model. In model verification, simulation results were well matched with the analytical solution, and the flow analyses in the virtual domain were also evaluated to be reasonable. The results of inundation simulations in the Janghowon and the Sebou river area by this study and CLF model were similar with each other and for Janghowon area, the simulation result was also similar to the flooding area of flood hazard map. The different parts in the simulation results of this study and the CLF model were compared and evaluated for each case. The results of this study suggest that the model proposed in this study can simulate the flooding well in the floodplain. However, in case of flood analysis using the model presented in this study, the characteristics and limitations of the model by domain composition method, governing equation and numerical method should be fully considered.