• Title/Summary/Keyword: Implicit function

Search Result 195, Processing Time 0.026 seconds

Online Adaptation of Control Parameters with Safe Exploration by Control Barrier Function (제어 장벽함수를 이용한 안전한 행동 영역 탐색과 제어 매개변수의 실시간 적응)

  • Kim, Suyeong;Son, Hungsun
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.1
    • /
    • pp.76-85
    • /
    • 2022
  • One of the most fundamental challenges when designing controllers for dynamic systems is the adjustment of controller parameters. Usually the system model is used to get the initial controller, but eventually the controller parameters must be manually adjusted in the real system to achieve the best performance. To avoid this manual tuning step, data-driven methods such as machine learning were used. Recently, reinforcement learning became one alternative of this problem to be considered as an agent learns policies in large state space with trial-and-error Markov Decision Process (MDP) which is widely used in the field of robotics. However, on initial training step, as an agent tries to explore to the new state space with random action and acts directly on the controller parameters in real systems, MDP can lead the system safety-critical system failures. Therefore, the issue of 'safe exploration' became important. In this paper we meet 'safe exploration' condition with Control Barrier Function (CBF) which converts direct constraints on the state space to the implicit constraint of the control inputs. Given an initial low-performance controller, it automatically optimizes the parameters of the control law while ensuring safety by the CBF so that the agent can learn how to predict and control unknown and often stochastic environments. Simulation results on a quadrotor UAV indicate that the proposed method can safely optimize controller parameters quickly and automatically.

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.

Embeded-type Search Function with Feedback for Smartphone Applications (스마트폰 애플리케이션을 위한 임베디드형 피드백 지원 검색체)

  • Kang, Moonjoong;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.974-983
    • /
    • 2017
  • In this paper, we have discussed the search function that can be embedded and used on Android-based applications. We used BM25 to suppress insignificant and too frequent words such as postpositions, Pivoted Length Normalization technique used to resolve the search priority problem related to each item's length, and Rocchio's method to pull items inferred to be related to the query closer to the query vector on Vector Space Model to support implicit feedback function. The index operation is divided into two methods; simple index to support offline operation and complex index for online operation. The implementation uses query inference function to guess user's future input by collating given present input with indexed data and with it the function is able to handle and correct user's error. Thus the implementation could be easily adopted into smartphone applications to improve their search functions.

Level Set Based Topological Shape Optimization Combined with Meshfree Method (레벨셋과 무요소법을 결합한 위상 및 형상 최적설계)

  • Ahn, Seung-Ho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Using the level set and the meshfree methods, we develop a topological shape optimization method applied to linear elasticity problems. Design gradients are computed using an efficient adjoint design sensitivity analysis(DSA) method. The boundaries are represented by an implicit moving boundary(IMB) embedded in the level set function obtainable from the "Hamilton-Jacobi type" equation with the "Up-wind scheme". Then, using the implicit function, explicit boundaries are generated to obtain the response and sensitivity of the structures. Global nodal shape function derived on a basis of the reproducing kernel(RK) method is employed to discretize the displacement field in the governing continuum equation. Thus, the material points can be located everywhere in the continuum domain, which enables to generate the explicit boundaries and leads to a precise design result. The developed method defines a Lagrangian functional for the constrained optimization. It minimizes the compliance, satisfying the constraint of allowable volume through the variations of boundary. During the optimization, the velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian functional. Compared with the conventional shape optimization method, the developed one can easily represent the topological shape variations.

2-Dimensional Moving Particle Simulation for Prediction of Oil Boom Performance in Waves (파랑 중 오일붐 성능 예측을 위한 2차원 입자법 시뮬레이션)

  • Nam, Jung-Woo;Park, Ji-In;Hwang, Sung-Chul;Park, Jong-Chun;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.90-97
    • /
    • 2013
  • Oil booms are one of the most widely used types of equipment for the protection of coastal areas against oil spills. In some situations, however, there are several types of oil leaks from the oil boom. Important factors regarding these phenomena include the surrounding ocean environment, such as waves, the density and viscosity of oil, the length of the oil boom skirt, etc. To estimate the performance of the oil boom, it is necessary to predict the behavior of the spilled oil and oil boom. In the present study, the prediction of oil boom performance in waves was carried out using the Pusan-National-University-modified Moving Particle Semi-implicit (PNU-MPS) method, which is an improved version of the original MPS proposed by Koshizuka and Oka (1996). The governing equations, which consist of continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators in the governing equations are replaced by the particle interaction models based on a kernel function. The simulation results were validated through a comparison with the results of Violeau et al. (2007)..

Design Sensitivity and Reliability Analysis of Plates (판구조물의 설계감도해석 및 신뢰성해석)

  • 김지호;양영순
    • Computational Structural Engineering
    • /
    • v.4 no.4
    • /
    • pp.125-133
    • /
    • 1991
  • For the purpose of efficiently calculating the design sensitivity and the reliability for the complicated structures in which the structural responses or limit state functions are given by implicit form, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis method needed in the reliability-based design is proposed. As numerical examples, two thin plates are analyzed for the cases of plane stress and plate bending. The initial yielding is defined as failure criterion, and applied loads, yield stress, plate thickness, Young's modulus and Poisson's ratio are treated as random variables. It is found that the response variances and the failure probabilities calculated by the proposed PFEM-based reliability method show good agreement with those by Monte Carlo simulation. The probabilistic design sensitivity evaluates explicitly the contribution of each random variable to probability of failure. Further, the design change can be evaluated without any difficulty, and their effect on reliability can be estimated quickly with high accuracy.

  • PDF

An User Authorization Mechanism using an Attribute Certificate in the IPSec-VPN System (IPSec-VPN 시스템에서의 속성 인증서를 이용한 사용자 접근 제어 방안)

  • 강명희;유황빈
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.5
    • /
    • pp.11-21
    • /
    • 2004
  • To authorize IPSec-VPN Client in Client-to-Gateway type of the IPSec-VPN system, it can be normally used with ID/Password verification method or the implicit authorization method that regards implicitly IPSec-VPN gateway as authorized one in case that the IPSec-VPN client is authenticated. However, it is necessary for the Client-to-Gateway type of the IPSec-VPN system to have a more effective user authorization mechanism because the ID/Password verification method is not easy to transfer the ID/Password information and the implicit authorization method has the vulnerability of security. This paper proposes an effective user authorization mechanism using an attribute certificate and designs a user authorization engine. In addition, it is implemented in this study. The user authorization mechanism for the IPSec-VPN system proposed in this study is easy to implement the existing IPSec-VPN system. Moreover, it has merit to guarantee the interoperability with other IPSec-VPN systems. Furthermore, the user authorization engine designed and implemented in this paper will provide not only DAC(Discretional Access Control) and RBAC(Role-Based Access Control) using an attribute certificate, but also the function of SSO(Single-Sign-On).

Stable Anisotropic Freezing Modeling Technique Using the Interaction between IISPH Fluids and Ice Particles (안정적이고 이방성한 빙결 모델링을 위한 암시적 비압축성 유체와 얼음 입자간의 상호작용 기법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.5
    • /
    • pp.1-13
    • /
    • 2020
  • In this paper, we propose a new method to stable simulation the directional ice shape by coupling of freezing solver and viscous water flow. The proposed ice modeling framework considers viscous fluid flow in the direction of ice growth, which is important in freezing simulation. The water simulation solution uses the method of applying a new viscous technique to the IISPH(Implicit incompressible SPH) simulation, and the ice direction and the glaze effect use the proposed anisotropic freezing solution. The condition in which water particles change state to ice particles is calculated as a function of humidity and new energy with water flow. Humidity approximates a virtual water film on the surface of the object, and fluid flow is incorporated into our anisotropic freezing solution to guide the growth direction of ice. As a result, the results of the glaze and directional freezing simulations are shown stably according to the flow direction of viscous water.

Topological Design Sensitivity on the Air Bearing Surface of Head Slider

  • Yoon, Sang-Joon;Kim, Min-Soo;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1102-1108
    • /
    • 2002
  • In this study, a topological design sensitivity of the ai. bearing surface (ABS) is suggested by using an adjoint variable method. The discrete form of the generalized lubrication equation based on a control volume formulation is used as a compatible condition. A residual function of the slider is considered as an equality constraint function, which represents the slider in equilibrium. The slider thickness parameters at all grid cells are chosen as design variables since they are the topological parameters determining the ABS shape. Then, a complicated adjoint variable equation is formulated to directly handle the highly nonlinear and asymmetric coefficient matrix and vector in the discrete system equation of air-lubricated slider bearings. An alternating direction implicit (ADI) scheme is utilized for the numerical calculation. This is an efficient iterative solver to solve large-scale problem in special band storage. Then, a computer program is developed and applied to a slider model of a sophisticated shape. The simulation results of design sensitivity analysis (DSA) are directly compared with those of FDM at the randomly selected grid cells to show the effectiveness of the proposed approach. The overall distribution of DSA results are reported, clearly showing the region on the ABS where special attention should be given during the manufacturing process.

A Study of the Epistemological Examination to Rural Society (농촌사회에 대한 인식론적 고찰)

  • Lim, Hyung-Baek;Lee, Seong-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.9 no.4 s.21
    • /
    • pp.19-34
    • /
    • 2003
  • The purpose of this study is to investigate an epistemological recognition of rural society. This study suggests an epistemological reorientation for rural society circumscribing diverse theoretical thoughts as well as empirical evidences. Traditional theoretical perspectives in urban-rural dichotomy envisioned by modernistic idea have regarded rural society as a premodern and underdeveloped society. The perspectives also have regarded city as a symbol of civilization and development. These perspectives thought of the function of rural society as a periphery that can survive as a back-up for urban-oriented prosperity. This study shows that these idea have been concentrated on agricultural expansionism and productivism which do not function in the post-modem societies my longer. The present study argues that these modernistic idea give little understanding of implicit value of rural society. Owing to the functional change of rural society which is quite omnipresent in the 21'st centuries in the world, the present study argues that the value of rural society should work even in the market society that has traditionally been regarded as an working-mechanism in urban society. The present study drives a new insight showing that rural renaissance is an explicit existence instead of a phenomenal one.