바이오센서와 디지털 섬유의 개발로 생체신호를 측정할 수 있는 디지털 의류는 개인의 건강, 독거노인 관리와 스포츠 활동 등 여러 분야에서 사용할 수 있다. 본 논문은 디지털 의류를 착용하여 24시간 측정된 생체신호와 GPS 정보 기반의 사용자의 스트레스 상태, 맥박, 위치, 운동량을 분석하기 위한 데이터베이스 구조와 표준 HL7 메타모델기반의 XML 문서로 저장하는 저장소를 설계한다. 저장된 정보를 분석하여 사용자의 시간에 따른 스트레스 상태 및 운동량 등을 확인 할 수 있다. 또한, 실시간으로 사용자의 맥박, 위치, 운동 강도, 응급상황을 파악할 수 시스템이다. 본 논문은 생체신호를 수집하여 분석하는 시스템구현에 대하여 기술한다.
This paper investigates the tonal patterns of English information structure composed of topic and focus. It has been argued in previous theories that there is a significant relationship between English topic-focus structure and intonation. The English topic is marked with L+H* pitch accent and focus is marked with H* pitch accent. These theories, however, are oversimplified ones since they do not consider the contextual differences of topic and focus. To examine more concrete tonal patterns of English topic and focus, we classified topic into two subcategories of reminding topic and old-information topic. Focus was categorized into three: information focus, contrastive focus, and reference focus. The overall results show that native English speakers are inclined to use both the L+H* and H* pitch accent for the topic and focus of an utterance. We also observe a tendency to deaccentuate the topics given as old information and to mark the topics given as noun phrase with H* pitch accent. As for the intonation of focus, H* pitch accent is the most frequent type of accent, but L+H* also shows a high percentage of implementation especially in the context of correction or contrast.
본 논문에서는 단층 퍼센트론 모델의 학습기능과 신경회로망 형성메모리의 오류정정 능력이 서로 보완적으로 결합된 새로운 적응 패턴인식 시스템의 광학적구현을 실현하였다. 여기서, 단층 퍼센트론 모델은 2차원 LCTV 공간 광변조기를 이용하여 편광인코딩방법과 비전형 양자화 방법으로 구현하였으며, Hopfield 연장메모리는 2차원 모델로 황장하고multifocus holoens를 이용하여 광학적으로 구현하였다. 아리비아 숫자 짝.홀수 판별에 고나한 광학적 실험 결과, 오류 및 부분 입력에 대한 정확한 패턴 분류가 됨을 확인함으로서, 본 논문에서 제시한 새로운 적응 광 패턴인식 시스템이 실제로 영상처리, 패턴인식 등의 분야에서 그 응용 가능성을 제시하였다.
Recently, with the advances in sensor techniques and net work computing, Ubiquitous Sensor Network (USN) has been received a lot of attentions from various communities. The sensor nodes distributed in the sensor network tend to continuously generate a large amount of data, which is called stream data. Sensor stream data arrives in an online manner so that it is characterized as high-speed, real-time and unbounded and it requires fast data processing to get the up-to-date results. The data stream has many application domains such as traffic analysis, physical distribution, U-healthcare and so on. Therefore, there is an overwhelming need of a USN middleware for processing such online stream data to provide corresponding services to diverse applications. In this paper, we propose a novel USN middleware which can provide users both context-aware service and meaningful sequential patterns. Our proposed USN middleware is mainly focused on location based applications which use stream location data. We also show the implementation of our proposed USN middleware. By using the proposed USN middleware, we can save the developing cost of providing context aware services and stream sequential patterns mainly in location based applications.
In this paper, we present a design and implementation of U-learning system using pen based augmented reality approach. Student has been given a smart pen and a smart study book, which is similar to the printed material already serviced. However, we print the study book using CMY inks, and embed perceptually invisible dot patterns using K ink. Smart pen includes (1) IR LED for illumination, IR pass filter for extracting the dot patterns, and (3) camera for image captures. From the image sequences, we perform topology analysis which determines the topological distance between dot pixels, and perform error correction decoding using four position symbols and five CRC symbols. When a student touches a smart study books with our smart pen, we show him/her multimedia (visual/audio) information which is exactly related with the selected region. Our scheme can embed 16 bit information, which is more than 200% larger than previous scheme, which supports 7 bits or 8 bits information.
Deep learning-based anomaly detection technology is used in various fields such as computer vision, speech recognition, and natural language processing. In particular, this technology is applied in various fields such as monitoring manufacturing equipment abnormalities, detecting financial fraud, detecting network hacking, and detecting anomalies in medical images. However, in the field of construction and architecture, research on deep learning-based data anomaly detection technology is difficult due to the lack of digitization of domain knowledge due to late digital conversion, lack of learning data, and difficulties in collecting and processing field data in real time. This study acquires necessary data through IoT (Internet of Things) from the viewpoint of monitoring for environmental management of architectural spaces, converts them into a database, learns deep learning, and then supports anomaly patterns using AI (Artificial Infelligence) deep learning-based anomaly detection. We propose an implementation process. The results of this study suggest an effective environmental anomaly pattern detection solution architecture for environmental management of architectural spaces, proving its feasibility. The proposed method enables quick response through real-time data processing and analysis collected from IoT. In order to confirm the effectiveness of the proposed method, performance analysis is performed through prototype implementation to derive the results.
본 논문에서는 입력패턴을 triple rail-coding 방식으로 표현한 후 입력의 직렬연결 방법으로 기호치환을 수행하는 광 병렬 변형부호화자리수 가산 시스템을 제안하였다. Triple rail-coding 방식으로 변형부호화자리수 입력을 표현할 때 중복연산 결과가 나오는 입력들은 동일한 패턴으로 전처리하여 기호치환과정의 규칙수를 줄였고, 광 구현시 공간 이동된 입력패턴을 직렬로 연결하여 광을 통과시킴으로써 공간 이동 연산, NOR 연산, 그리고 문턱치 연산과정이 필요 없는 광 가산기를 구현하였다.
본 연구에서는 비균일 배열 안테나의 방사패턴 합성을 위하여 폭이 다른 마이크로스트립 패치 안테나를 급전소자 하는 급전 방식에 대하여 연구하였다. 마이크로스트립 패치 안테나는 전송선로 모델 해석 방법을 적용하여 해석하였으며, 급전소자 간의 급전 선로 길이가 h_g의 정수 배가되면 안테나 각 급전소자의 상대적 전류 비와 입력 어드미턴스의 비가 같음을 유도하였다. 급전소자의 수가 각각 6개와 9개로 제작된 비균일 구형 마이크로스트립 패치 배열 안테나를 실험한 결과 방사패턴에 대한 이론치와 실험치가 잘 일치함을 확인할 수 있다. 따라서 본 연구 결과는 비균일 배열 안테나를 구현하기 위한 급전 방식으로 사용될 수 있을 것으로 사료된다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제8권4호
/
pp.316-321
/
2008
Advanced computer network technology enables computers to be connected in an open network environment. Despite the growing numbers of security threats to networks, most intrusion detection identifies security attacks mainly by detecting misuse using a set of rules based on past hacking patterns. This pattern matching has a high rate of false positives and can not detect new hacking patterns, which makes it vulnerable to previously unidentified attack patterns and variations in attack and increases false negatives. Intrusion detection and analysis technologies are thus required. This paper investigates the asymmetric costs of false errors to enhance the performances the detection systems. The proposed method utilizes the network model to consider the cost ratio of false errors. By comparing false positive errors with false negative errors, this scheme achieved better performance on the view point of both security and system performance objectives. The results of our empirical experiment show that the network model provides high accuracy in detection. In addition, the simulation results show that effectiveness of anomaly traffic detection is enhanced by considering the costs of false errors.
게임에서 인공 지능은 주로 NPC(Non Player Character)와 적의 행동 패턴을 결정하거나 길 찾기에 사용된다. 이러한 인공 지능을 구현하는 경우에 FSM(Finite State Machine)과 플로킹(Flocking) 방법이 사용된다. FSM 방법에서는 상태 개수에 따라 NPC의 행동 개수에도 제한을 받는다. 상태 개수가 너무 적은 경우 플레이어들이 쉽게 NPC의 행동 패턴을 알 수 있으며 너무 많은 경우에는 구현이 복잡하게 된다. Flocking 방법에서는 리더의 결정에 따라 NPC들의 행동이 결정되기 때문에 NPC들의 이동 패턴이나 공격 방향을 쉽게 플레이어들이 알 수 있다. 본 논문에서는 이 문제를 개선하기 위하여 동물의 세력 투쟁 행동(공격, 위협, 의례적인 보여줌, 기피, 복종)들을 NPC에 적용하는 것을 제안하고 이를 Unity3D 엔진을 이용하여 구현한다. 이 논문은 실제감 있는 NPC 인공 지능 제작에 도움을 줄 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.