• Title/Summary/Keyword: Implantable

Search Result 316, Processing Time 0.025 seconds

Impact of the human body in wireless propagation of medical implants for tumor detection

  • Morocho-Cayamcela, Manuel Eugenio;Kim, Myung-Sik;Lim, Wansu
    • Journal of Internet Computing and Services
    • /
    • v.21 no.2
    • /
    • pp.19-26
    • /
    • 2020
  • This paper analyses the feasibility of using implantable antennas to detect and monitor tumors. We analyze this setting according to the wireless propagation loss and signal fading produced by human bodies and their environment in an indoor scenario. The study is based on the ITU-R propagation recommendations and prediction models for the planning of indoor radio communication systems and radio local area networks in the frequency range of 300 MHz to 100 GHz. We conduct primary estimations on 915 MHz and 2.4 GHz operating frequencies. The path loss presented in most short-range wireless implant devices does not take into account the human body as a channel itself, which causes additional losses to wireless designs. In this paper, we examine the propagation through the human body, including losses taken from bones, muscles, fat, and clothes, which results in a more accurate characterization and estimation of the channel. The results obtained from our simulation indicates a variation of the return loss of the spiral antenna when a tumor is located near the implant. This knowledge can be applied in medical detection, and monitoring of early tumors, by analyzing the electromagnetic field behavior of the implant. The tumor was modeled under CST Microwave Studio, using Wisconsin Diagnosis Breast Cancer Dataset. Features like the radius, texture, perimeter, area, and smoothness of the tumor are included along with their label data to determine whether the external shape has malignant or benign physiognomies. An explanation of the feasibility of the system deployment and technical recommendations to avoid interference is also described.

Wireless Power Transmission Technology for Implantable Telemetry Device based on Multiple Transmit Coils (다중코일방식에 기초한 원격 생체 정보 측정을 위한 무선전력전송 기술)

  • Ryu, Young-Kee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.203-211
    • /
    • 2015
  • The implanted telemetry system provides the monitoring of species while they move within their cages. Species monitored include mice, rats, rabbits, dogs, pigs, primates, sheep, horses, cattle, and others. A miniature transmitter implanted in each animal measures one or more parameters. Parameters measured include arterial pressure, intra-pleural pressure, left ventricular pressure, intra-ocular pressure, bladder pressure, ECG, EMG, EEG, EOG, temperature, activity, and other parameters and transmits the data via radio frequency signals to a nearby receiver. Every conventional dedicated transmitter contains one or more sensors, cpu and battery. Due to the expected life of battery, the measuring time is limited. To overcome these problems, electromagnetic inductive coupling based wireless power transmission technology using multiple transmit coils were proposed. Each coil having different active area are driven by the coil driver. In this research, parallel resonance based coil driver was proposed. In addition, the device to detect where the receiver is positioned was proposed. From the experiments we show how to determine the driving condition of coil driver.

Security Analysis of the PHOTON Lightweight Cryptosystem in the Wireless Body Area Network

  • Li, Wei;Liao, Linfeng;Gu, Dawu;Ge, Chenyu;Gao, Zhiyong;Zhou, Zhihong;Guo, Zheng;Liu, Ya;Liu, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.476-496
    • /
    • 2018
  • With the advancement and deployment of wireless communication techniques, wireless body area network (WBAN) has emerged as a promising approach for e-healthcare that collects the data of vital body parameters and movements for sensing and communicating wearable or implantable healthful related information. In order to avoid any possible rancorous attacks and resource abuse, employing lightweight ciphers is most effective to implement encryption, decryption, message authentication and digital signature for security of WBAN. As a typical lightweight cryptosystem with an extended sponge function framework, the PHOTON family is flexible to provide security for the RFID and other highly-constrained devices. In this paper, we propose a differential fault analysis to break three flavors of the PHOTON family successfully. The mathematical analysis and simulating experimental results show that 33, 69 and 86 random faults in average are required to recover each message input for PHOTON-80/20/16, PHOTON-160/36/36 and PHOTON-224/32/32, respectively. It is the first result of breaking PHOTON with the differential fault analysis. It provides a new reference for the security analysis of the same structure of the lightweight hash functions in the WBAN.

Development of A Biotelemetry System for A Totally Implantable Artificial Heart (완전이식 인공심장용 무선정보 전송장치의 개발)

  • Choi, Won-Woo;Kang, Dong-Woo;Park, Seong-Keun;Choi Jae-Soon;Kim, Hee-Chan;Min, Byoung-Goo
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.57-66
    • /
    • 1996
  • In this paper, a new biotelemetry system for a transcutaneous data communication between an implanted artificial heart with a control system and an external human-interfaced management system has been developed. A radio telemetry using radio frequency is a commonly used method in the conventional telemetry systems. But, it is not suitable for the medical applications because of not only an interference due to a radio broadcasting but also a harmfulness to the human body. In this paper, therefore, a new biotelemetry system applied to an artificial heart has been developed with the results of the recent research for an optical telemetry system based on the infrared light transmission with good skin permeability. The performance of the biotelemetry system developed has been assessed through mock circulatory experiments, and the clinical applicability has been also confirmed with the successful results in the animal experiments.

  • PDF

Stretchable Transistors Fabricated on Polydimethylsiloxane Elastomers

  • Jung, Soon-Won;Choi, Jeong Seon;Park, Chan Woo;Na, Bock Soon;Lim, Sang Chul;Lee, Sang Seok;Cho, Kyoung Ik;Chu, Hye Yong;Koo, Jae Bon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.389.2-389.2
    • /
    • 2014
  • Polydimethylsiloxane (PDMS) based electronic devices are widely used for various applications in large area electronics, biomedical wearable interfaces and implantable circuitry where flexibility and/or stretchability are required. A few fabrication methods of electronic devices directly on PDMS substrate have been reported. However, it is well known that micro-cracks appear in the metal layer and in the lithography pattern on a PDMS substrate. To solve the above problems, a few studies for fabrication of stiff platform on PDMS substrate have been reported. Thin-film islands of a stiff region are fabricated on an elastomeric substrate, and electronic devices are fabricated on these stiff islands. When the substrate is stretched, the deformation is mainly accommodated by the substrate, and the stiff islands and electronic devices experience relatively small strains. Here, we report a new method to achieve stiff islands structures on an elastomeric substrate at a various thickness, as the platform for stretchable electronic devices. The stiff islands were defined by conventional photolithography on a stress-free elastomeric substrate. This technique can provide a practical strategy for realizing large-area stretchable electronic circuits, for various applications such as stretchable display or wearable electronic systems.

  • PDF

Implantation of an Intrathecal Drug Administration System -A report of two cases- (척수강 내 약물 주입기의 이식 -증례보고-)

  • Lee, Sang Jin;Nam, Sang Kun;Kim, Jang Hyun;Kim, Hyun Joo;Lee, Sang Chul;Kim, Yong Chul
    • The Korean Journal of Pain
    • /
    • v.22 no.1
    • /
    • pp.68-73
    • /
    • 2009
  • Opioids profoundly inhibit evoked discharges of spinal nociceptive neurons, thereby inhibiting the transmission of pain. Intrathecal administration of opioids using implantable continuous infusion systems is an effective method of pain relief when other treatments have failed, as well as for patients with adequate analgesia on high dose therapy that produces unacceptable side effects. We report two cases of intrathecal pump implantation performed in patients suffering from intractable chronic pain. A test dose of 3 mg morphine was injected into the epidural space. No side effects were noted and patients experienced considerable pain relief. Implantation was performed one day after the test. The initial intrathecal morphine delivery dose was half of the equivalent dose of daily oral intake opioids and the infusion rate was increased gradually under close observation for opioid side effects. Two days post-implantation, both patients were discharged without any complications.

Design and Analysis of A New Type of the Motor-Driven Blood Pump for Artificial Heart (인공심장용 전동기구동형 혈액 펌프의 설계 및 해석에 관한 연구)

  • 천길정;김희찬
    • Journal of Biomedical Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.139-150
    • /
    • 1989
  • A new motor-driven blood pump for artificial heart was developed. In this blood pump, a small size, high torque brushless DC motor was used as an energy converter and the motor rolls back and forth on a circular track. This movement of the "rolling-cyliner" causes blood ejection by alternately pushing left or right polyurethane blood sacs. This moving-actuator mechanism could be eliminate two potential problems of other motor-driven artificial hearts such as large size and poor anastomosis for the implantation. Theoretical analyses on the pump efficiency, the temperature rise, and the inflow mechanism were also performed. In a series of mock circulation tests, the theoretical analyses were compared to the measured hemodynamic and mechanical values. The pump system was shown to have sufficient cardiac output (upto 9 L/min), sensitivity to preload, and mechanical stability to be tested as an implantable total artificial heart.ial heart.

  • PDF

Enhanced Secure Sensor Association and Key Management in Wireless Body Area Networks

  • Shen, Jian;Tan, Haowen;Moh, Sangman;Chung, Ilyong;Liu, Qi;Sun, Xingming
    • Journal of Communications and Networks
    • /
    • v.17 no.5
    • /
    • pp.453-462
    • /
    • 2015
  • Body area networks (BANs) have emerged as an enabling technique for e-healthcare systems, which can be used to continuously and remotely monitor patients' health. In BANs, the data of a patient's vital body functions and movements can be collected by small wearable or implantable sensors and sent using shortrange wireless communication techniques. Due to the shared wireless medium between the sensors in BANs, it may be possible to have malicious attacks on e-healthcare systems. The security and privacy issues of BANs are becoming more and more important. To provide secure and correct association of a group of sensors with a patient and satisfy the requirements of data confidentiality and integrity in BANs, we propose a novel enhanced secure sensor association and key management protocol based on elliptic curve cryptography and hash chains. The authentication procedure and group key generation are very simple and efficient. Therefore, our protocol can be easily implemented in the power and resource constrained sensor nodes in BANs. From a comparison of results, furthermore, we can conclude that the proposed protocol dramatically reduces the computation and communication cost for the authentication and key derivation compared with previous protocols. We believe that our protocol is attractive in the application of BANs.

Controlled Release Behavior of Bioactive Molecules from Photo-Reactive Hyaluronic Acid-Alginate Scaffolds

  • Nam, Hye-Sung;An, Jeong-Ho;Chung, Dong-June;Kim, Ji-Heung;Chung, Chong-Pyoung
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.530-538
    • /
    • 2006
  • There are three important components in tissue engineering: the cells, signaling factors (cytokines and growth factors), and scaffolds. To obtain finely engineered tissue, all three components should perform their individual functions and be fully integrated with each other. For the past few years, we have studied the characteristics of photodimerizable HA (CHA)/alginate (CA) composite materials. CHA/CA complex hydrogels, which were irradiated under UV light and, then treated with calcium ions, were found to have good biocompatibility, mechanical properties and water resistance for implantable tissue scaffolds. In this study, we introduced a cell growth factor (basic fibroblast growth factor; bFGF) into the CHA/CA scaffolds and studied its release behavior. We also introduced tetracycline hydrochloride and flurbiprofen into the same scaffolds as model activation factors and evaluated their release behaviors from the scaffolds. The drug release rate from the materials was influenced by various parameters, such as the degree of crosslinking, the cross linker type, the physico-chemical properties of the drug, and the amount of the drug in the polymer. The results indicated that the negatively charged CHA/CA composite materials showed sustained release behavior and that HA has a particularly strong negative charge, making it attractive toward tetracycline hydrochloride and bFGF, but repulsive toward flurbiprofen.

Rate-Responsive Permanent Pacemaker Implantation in a Pekingese Dog with a Sick Sinus Syndrome (동방결절 기능 부전군을 가진 페키니즈 종의 개에 대한 심장 박동수 반응형 영구 심장 박동기의 장착)

  • Han, Dong-Hyun;Choi, Ran;Hyun, Chang-Baig
    • Journal of Veterinary Clinics
    • /
    • v.27 no.5
    • /
    • pp.569-572
    • /
    • 2010
  • A 4-year-old neutered female Pekingese dog (weighing 3.6 kg) was referred with the primary complaint of exercise intolerance with occasional syncope. Physical examination revealed irregularly irregular heart rhythm with persistent pulse deficits. The 12-lead surface ECG showed a marked sinus arrest with occasional junctional escape beats, indicating a sick sinus syndrome. Permanent transvenous cardiac pacing with a rate-responsive bipolar implantable pacemaker (VVIR type) was performed in the right ventricle. After pacemaker implantation, the clinical signs were remarkably improved. No further syncopal episodes have yet been occurred after implantation.