• Title/Summary/Keyword: Implant-supported fixed dental prosthesis

Search Result 94, Processing Time 0.024 seconds

A comparative study of the distribution of implant fixtures according to length and diameter by retained type of implant-supported fixed prosthesis (임플란트 지지 고정성 치과 보철물 유지방식에 따른 고정체의 직경과 길이 분포 비교 연구)

  • Kim, Wook-Tae
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.347-353
    • /
    • 2006
  • The Purpose of this study was to compare the distribution of implant fixtures according to length and diameter between screw-retained and cement-retained implant-supported fixed prosthesis and to asses whether prosthesis retained types affected the selection of size of implant fixtures. This study presents a follow-up 2,416 implant-supported fixed type prosthesis that have been screw retained or cemented retained for about 10 years in 14 dental clinics. Included in the study were 458 men and 397 women and implant fixtures used in this study were screw retained type 1,057 and 1,359 of cemented retained type. The statistical results among the diameter types of fixture by prosthesis retained type was no significant difference noted (P= 0.809) and there was significant differences was enough to among the lengths of fixture by prosthesis retained type (P= 0.020). However there were no significant difference among the fixture diameter types and length by prosthesis retained type (P= 0.486). So there was not affected to prostheis fixation mechanism for the size of implant fixtures.

  • PDF

A Digitally Designed All-on-4 Restoration with Screwmentable Concept

  • Park, Koungjin;Han, Jung-Suk;Lee, Jae-Hyun
    • Journal of Korean Dental Science
    • /
    • v.15 no.1
    • /
    • pp.84-91
    • /
    • 2022
  • An all-on-4 restoration allows edentulous patients to use a fixed prosthesis with a minimum number of implants. These implant-supported fixed complete dentures have traditionally been fabricated as screw-retained or cement-retained prostheses. However, it is difficult to passively fit the long-span full-arch prosthesis using the screw-retained type restoration, and predictable retrievability is not obtained with the cement-retained type. This case report describes a prosthesis fabricated using a combination of the two retention types. The screwmentable method allows the implant-supported fixed complete denture to achieve a passive fit at the connection with retrievability. In addition, a framework with an optimized size was designed by using digital dental technology.

Trend analysis of prosthodontic treatment modality between 2005 and 2008 in Seoul National University Dental Hospital

  • Li, Hongbo;Lee, Jai-Bong;Liu, Hongchen;Han, Jung-Suk;Yang, Jae-Ho;Koak, Jai-Young;Heo, Seong-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.1
    • /
    • pp.4-6
    • /
    • 2010
  • PURPOSE. The aim of this article is to analyze the preference for treatment modality of dentists. MATERIAL AND METHODS. Data of 20,038 patients was involved. Data analysis were done by distribution according to the various kinds of prosthesis, including complete denture, removable partial denture, fixed partial denture, implant-supported dental prosthesis as well as distribution according to the professional titles of the dentists finishing the treatment, including resident and professors. RESULTS. The number of cases of dental prosthesis increased year by year. 61.06% of the patients accepted fixed partial denture restoration. The number of patients who accepted implant supported restoration is also increasing year by year. The number of complete denture, implant-supported dental prosthesis finished by professors was larger than that done by residents, while it was contrary for removable partial denture, fixed partial denture, and the difference was statistically significant (P < .05). CONCLUSION. Professors and residents have some difference in the categorization of prosthesis finished. Fixed partial denture and implant-supported dental prosthesis are preferred.

Does the prosthesis weight matter? 3D finite element analysis of a fixed implant-supported prosthesis at different weights and implant numbers

  • Tribst, Joao Paulo Mendes;Dal Piva, Amanda Maria de Oliveira;Borges, Alexandre Luiz Souto;Rodrigues, Vinicius Aneas;Bottino, Marco Antonio;Kleverlaan, Cornelis Johannes
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2020
  • PURPOSE. This study evaluated the influence of prosthesis weight and number of implants on the bone tissue microstrain. MATERIALS AND METHODS. Fifteen (15) fixed full-arch implant-supported prosthesis designs were created using a modeling software with different numbers of implants (4, 6, or 8) and prosthesis weights (10, 15, 20, 40, or 60 g). Each solid was imported to the computer aided engineering software and tetrahedral elements formed the mesh. The material properties were assigned to each solid with isotropic and homogeneous behavior. The friction coefficient was set as 0.3 between all the metallic interfaces, 0.65 for the cortical bone-implant interface, and 0.77 for the cancellous bone-implant interface. The standard earth gravity was defined along the Z-axis and the bone was fixed. The resulting equivalent strain was assumed as failure criteria. RESULTS. The prosthesis weight was related to the bone strain. The more implants installed, the less the amount of strain generated in the bone. The most critical situation was the use of a 60 g prosthesis supported by 4 implants with the largest calculated magnitude of 39.9 mm/mm, thereby suggesting that there was no group able to induce bone remodeling simply due to the prosthesis weight. CONCLUSION. Heavier prostheses under the effect of gravity force are related to more strain being generated around the implants. Installing more implants to support the prosthesis enables attenuating the effects observed in the bone. The simulated prostheses were not able to generate harmful values of peri-implant bone strain.

Occlusion for implant-supported fixed dental prostheses in partially edentulous patients: a literature review and current concepts

  • Yuan, Judy Chia-Chun;Sukotjo, Cortino
    • Journal of Periodontal and Implant Science
    • /
    • v.43 no.2
    • /
    • pp.51-57
    • /
    • 2013
  • Implant treatment has become the treatment of choice to replace missing teeth in partially edentulous areas. Dental implants present different biological and biomechanical characteristics than natural teeth. Occlusion is considered to be one of the most important factors contributing to implant success. Most literature on implant occlusal concepts is based on expert opinion, anecdotal experiences, in vitro and animal studies, and only limited clinical research. Furthermore, scientific literature regarding implant occlusion, particularly in implant-supported fixed dental prostheses remains controversial. In this study, the current status of implant occlusion was reviewed and discussed. Further randomized clinical research to investigate the correlation between implant occlusion, the implant success rate, and its risk factors is warranted to determine best clinical practices.

Full mouth rehabilitation of edentulous patient with fixed implant prosthesis (고정성 임플란트 보철물을 이용한 완전 무치악 환자의 구강회복 증례)

  • Shi, Hee-Hyun;Kim, Jong-Jin;Baik, Jin;Cha, Hyun-Suk;Lee, Joo-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.3
    • /
    • pp.147-156
    • /
    • 2021
  • There are various treatment options such as conventional complete denture, hybrid prosthesis and implant-supported fixed prosthesis for fully edentulous patients. In case of implant-supported fixed prosthesis, compared to removable prosthesis, it is difficult to place the implant in the correct position considering the anatomical contours of the final prosthesis. In this case, a full mouth rehabilitation with implant-supported fixed prosthesis was performed for a patient who required extraction of all remaining teeth due to dental caries and chronic periodontitis. In the implant placement stage, the implant was placed in the desired position using a surgical guide fabricated considering the anatomical contours of the final prosthesis, and the function and esthetics were evaluated through correction and re-fabrication of the fixed provisional restoration. A final restoration of porcelain fused to gold prosthesis was delivered to the patient based on the provisional restoration. To cope with complications such as loosening of screws and fracture of porcelain, a screw-retained type prosthesis was fabricated for the posterior part and a screw-cement-retained type prosthesis for the anterior part. As a result, the patient showed an improved prognosis in terms of functional and esthetics after the final prosthesis was delivered.

EFFECT OF NUMBER OF IMPLANTS AND CANTILEVER DESIGN ON STRESS DISTRIBUTION IN THREE-UNIT FIXED PARTIAL DENTURES: A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS

  • Park, Ji-Hyun;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.3
    • /
    • pp.290-297
    • /
    • 2008
  • STATEMENT OF PROBLEM: Implant-supported fixed cantilever prostheses are influenced by various biomechanical factors. The information that shows the effect of implant number and position of cantilever on stress in the supporting bone is limited. PURPOSE: The purpose of this study was to investigate the effect of implant number variation and the effect of 2 different cantilever types on stress distribution in the supporting bone, using 3-dimensional finite element analysis. MATERIAL AND METHODS: A 3-D FE model of a mandibular section of bone with a missing second premolar, first molar, and second molar was developed. $4.1{\times}10$ mm screw-type dental implant was selected. 4.0 mm height solid abutments were fixed over all implant fixtures. Type III gold alloy was selected for implant-supported fixed prostheses. For mesial cantilever test, model 1-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 1-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 1-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with mesial cantilever were simulated. And then, 155N oblique force was applied to the buccal cusp of second premolar. For distal cantilever test, model 2-1 which has three $4.1{\times}10$ mm implants and fixed prosthesis with no pontic, model 2-2 which has two $4.1{\times}10$ mm implants and fixed prosthesis with a central pontic and model 2-3 which has two $4.1{\times}10$ mm implants and fixed prosthesis with distal cantilever were simulated. And then, 206N oblique force was applied to the buccal cusp of second premolar. The implant and superstructure were simulated in finite element software(Pro/Engineer wildfire 2.0). The stress values were observed with the maximum von Mises stresses. RESULTS: Among the models without a cantilever, model 1-1 and 2-1 which had three implants, showed lower stress than model 1-2 and 2-2 which had two implants. Although model 2-1 was applied with 206N, it showed lower stress than model 1-2 which was applied with 155N. In models that implant positions of models were same, the amount of applied occlusal load largely influenced the maximum von Mises stress. Model 1-1, 1-2 and 1-3, which were loaded with 155N, showed less stress than corresponding model 2-1, 2-2 and 2- 3 which were loaded with 206N. For the same number of implants, the existence of a cantilever induced the obvious increase of maximum stress. Model 1-3 and 2-3 which had a cantilever, showed much higher stress than the others which had no cantilever. In all models, the von Mises stresses were concentrated at the cortical bone around the cervical region of the implants. Meanwhile, in model 1-1, 1-2 and 1-3, which were loaded on second premolar position, the first premolar participated in stress distribution. First premolars of model 2-1, 2-2 and 2-3 did not participate in stress distribution. CONCLUSION: 1. The more implants supported, the less stress was induced, regardless of applied occlusal loads. 2. The maximum von Mises stress in the bone of the implant-supported three unit fixed dental prosthesis with a mesial cantilever was 1.38 times that with a central pontic. The maximum von Mises stress in the bone of the implant-supported three-unit fixed dental prosthesis with a distal cantilever was 1.59 times that with a central pontic. 3. A distal cantilever induced larger stress in the bone than a mesial cantilever. 4. A adjacent tooth which contacts implant-supported fixed prosthesis participated in the stress distribution.

Restoration of Mandibular Edentulous Patient By Dental Implant: Case Report

  • Kwon, Ji-Yung;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.3
    • /
    • pp.360-365
    • /
    • 2000
  • The completely edentulous patient has few treatment options in conventional dentistry. When implants are considered, treatment plans range from a 2-implant overdenture to a completely implant-supported prosthesis. Fixed prosthesis is often the preferred selection of the edentulous patient. fixed full-arch cert amo-metal restorations can be a predictable implant treatment modality for the edentulous patient. Implant-supported fixed prosthesis has several advantages: predictability, fixedness, retrievability, improved function, lower maintenance of prosthesis, long-term published success. Edentulous patients with a severely resorbed mandible often experience problems with their dentures. Treatment concepts involving two to four implants for the support of an overdenture have been proposed. There seems to be no need to insert more than two endosteal implants to support an overdenture, however, long-term prospective studies are needed to support this notion. Using short endosseous implants and an overdenture in the extremely resorbed mandible is a justified treatment option because of the relative simplicity and low morbidity of this treatment strategy. Implant-supported overdenture has several advantages: Cost, retrievability, hygiene access, profile and contour control, increased retention and stability, implant installed in a predicted region(ant. mandible).

  • PDF

Clinical cases of implant-supported fixed dental prosthesis using modified lingual screw system (T-screw system) (개선된 설측 고정 나사 시스템(T-screw system)을 이용한 임플란트 보철 수복 증례)

  • Hong, Tae-Young;Kim, Man-Yong;Yoon, Joon-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.54 no.4
    • /
    • pp.423-430
    • /
    • 2016
  • The implant prosthesis can be divided into the screw retained prosthesis and cement retained prosthesis. Each type has advantages as well as disadvantages which is unfavorable to maintain the implants. To overcome these drawbacks, T-screw system was developed. T-screw system which utilizes a lingual direction of the screw to retain the implant prosthesis, has advantages of retrievability of the prosthesis, passive fit, and possibility to form esthetic and functional occlusal surface. The prior prosthesis which utilized horizontal screws had difficulty in fabrication especially in the case of multiple units, and also limited use with all-ceramic prosthesis. In this case, fabricating the implant prosthesis by using the T-screw system showed superior results in easy maintenance, esthetics, and also functions. In addition, we are to report the method of using the T-screw system in implant prosthesis, such as multiple units of implant prosthesis and all ceramic prosthesis.

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.