• Title/Summary/Keyword: Implant fixture diameter

Search Result 68, Processing Time 0.028 seconds

A 3-dimensional Finite Element Analysis of Stress Distribution in the Supporting Bone by Diameters of Dental Implant Fixture (골유착성 치과 임플랜트 고정체 직경에 따른 지지골의 응력분포에 관한 삼차원 유한요소 분석적 연구)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.26 no.1
    • /
    • pp.69-76
    • /
    • 2004
  • The objective of this finite element method study was to analyze the stress distribution induced on a supporting bone by 3.75mm, 4.0mm, 5.0mm diameter of dental implant fixture(13mm length). 3-dimensional finite element models of simplified gold alloy crown(7mm height) and dental implant structures(gold cylinder screw, gold cylinder, abutment screw, abutment, fixture and supporting bone(cortical bone, cancellous bone) designs were subjected to a simulated biting force of 100 N which was forced over occlusal plane of gold alloy crown vertically. Maximum von Mises stresses(MPa) under vertical loading were 9.693(3.75mm diameter of fixture), 8.885(4.0mm diameter of fixture), 6.301(5.0mm diameter of fixture) and the highest von Mises stresses of all models were concentrated in the surrounding crestal cortical bone. The wide diameter implant was the good choice for minimizing cortical bone-fixture interface stress.

  • PDF

Photoelastic Stress Analysis of Single Implant Restoration According to Implant Fixture Size and Abutment Diameter (단일치 임플란트에서 고정체와 지대주 직경의 차이에 따른 광탄성 응력 분석)

  • Lee, Jin-Han;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.3
    • /
    • pp.253-267
    • /
    • 2008
  • The purpose of this study was to evaluate the pattern and the magnitude of stress distribution in the supporting tissues surrounding implant fixture with different diameter of implant fixtures(3i implant, Ø4.0, Ø5.0, Ø6.0mm and UCLA abutments(Ø4.1, Ø5.0, Ø6.0mm using photoelastic stress analysis. Photoelastic model was made with PL-2 resin(Measurements Group, Raleigh, USA) and three implants of each diameter were placed in the mandibular posterior edentulous area distal to the canine. Individual crowns were fabricated using UCLA abutments. Photoelastic stress analysis was carried out to measure the fringe order around the implant supporting structure under simulated loading conditions(15 lb, 30 lb). The results were as follows; 1. The more the diameter of implant fixture was increased, the less the stress concentration on cervical area of fixture was observed under loading. 2. Increasing mesiodistal diameter of implant superstructure had no much influence on stress distribution around implant fixture. 3. The use of smaller abutment had no influence on stress distribution around implant fixture. The use of smaller abutment diameter than that of implant fixture had no favorable effect on implant supporting tissue at biomechanical consideration.

A comparative study of the distribution of implant fixtures according to length and diameter by retained type of implant-supported fixed prosthesis (임플란트 지지 고정성 치과 보철물 유지방식에 따른 고정체의 직경과 길이 분포 비교 연구)

  • Kim, Wook-Tae
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.347-353
    • /
    • 2006
  • The Purpose of this study was to compare the distribution of implant fixtures according to length and diameter between screw-retained and cement-retained implant-supported fixed prosthesis and to asses whether prosthesis retained types affected the selection of size of implant fixtures. This study presents a follow-up 2,416 implant-supported fixed type prosthesis that have been screw retained or cemented retained for about 10 years in 14 dental clinics. Included in the study were 458 men and 397 women and implant fixtures used in this study were screw retained type 1,057 and 1,359 of cemented retained type. The statistical results among the diameter types of fixture by prosthesis retained type was no significant difference noted (P= 0.809) and there was significant differences was enough to among the lengths of fixture by prosthesis retained type (P= 0.020). However there were no significant difference among the fixture diameter types and length by prosthesis retained type (P= 0.486). So there was not affected to prostheis fixation mechanism for the size of implant fixtures.

  • PDF

Finite element analysis on the stress of supporting bone by diameters and lengths of dental implant fixture (유한요소법을 이용한 치과 임플란트 고정체의 직경과 길이에 따른 지지골의 응력 분석)

  • Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.151-156
    • /
    • 2016
  • Purpose: The dental implant should be enough to endure chewing load and it's required to have efficient design and use of implant to disperse the stress into bones properly. This study was to evaluate the stress distribution on a supporting bone by lengths and diameters of the implant fixture. Methods: The modeling and analysis of stress distribution was used for the simple molar porcelain crown model by Solidworks as FEM program. It was designed on applying with tightening torque of 20 Ncm of a abutment screw between a cement retained crown abutment and a fixture. The fixtures of experimental model used 10, 13mm by length and 4, 5mm by diameter. A external vertical loading on the two buccal cusps of crown and performed finite element analysis by 100 N. Results: The maximum von Mises stress(VMS) of all supporting bone models by fixture length and diameter were concentrated on the upper side of supporting compact bone. The maximum stress of each model under vertical load were 164.9 MPa of M410 model, and 141.2 MPa of M413 model, 54.3 MPa of M510 model, 53.6 MPa of M513 model. Conclusion: The stress reduction was increase of fixture's diameter than it's length. So it's effective to use the wider fixture as possible to the conditions of supporting bone.

Influence of diameter, length, and platform shape of implant fixture on the stress distribution in and around the screw type implant (나사형 임플란트 고정체의 길이, 직경, 플랫폼 형태에 따른 임플란트와 주위조직의 응력분포)

  • Kang, Ji-Eun;Chung, Hyun-Ju;Ku, Chul-Whoi;Yang, Hong-So
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.277-288
    • /
    • 2002
  • Seven finite element models were constructed in mandible having single screw-type implant fixture connected to the premolar superstructure, in order to evaluate how the length, diameter and platform shape of a screw-type fixture influence the stress in the supporting tissue around fixtures. Each finite element model was varied in terms of length, diameter, and platform shape of the fixture. In each model, 250N of vertical load was placed on the central pit of an occlusal plane and 250N of oblique load placed on the buccal cusp. The stress distribution in the supporting tissue and the other components was analysed using 2-dimensional finite element analysis and the maximum von Mises stress in each reference area was compared. Under lateral loading, the stress was larger at the abutment/fixture interface, and in the crestal bone, compared to the stress pattern under vertical loading. The amount of stress at the superstructure was similar regardless of the length, diameter and platform shape of a fixture. Around the longer fixture, the stress was decreased at the bone crest and subjacent cancellous bone and increased in the cancellous bone area apical to the fixture. Around the wider fixture, the stress was decreased at the abutment/fixture interface, and the bone crest and increased in the cancellous bone area apical to the fixture. Around the fixture having wider platform, less stress was produced at the abutment/fixture interface and the upper part of the cortical bone, compared to the fixture having standard platform. In conclusion, the stress distribution of the supporting tissue was affected by length, diameter, and platform shape of a fixture, and the fixture which was larger in diameter and length could reduce the stress in the supporting tissues at the bone-fixture interface and bone crest area.

Effect of morphology and diameter of implant fixture-abutment connection on mechanical failure of implants (임플랜트 고정체-지대주 연결부의 형태와 직경이 임플랜트의 기계적 실패에 미치는 영향)

  • Yun, Bo-Hyeok;Shin, Hyon-Mo;Yun, Mi-Jung;Huh, Jung-Bo;Jeong, Chang-Mo;Kang, Eun-Sook
    • The Journal of the Korean dental association
    • /
    • v.53 no.9
    • /
    • pp.644-655
    • /
    • 2015
  • Purpose: This study was conducted to evaluate the effect of the fixture abutment connection type and diameter on the screw joint stability in external butt joint for 2nd surgery and internal cone connected type implant system for 1st and 2nd surgery using ultimate fracture strength. Materials and Methods: USII system, SSII system and GSII system of Osstem Implant were used. Each system used the fixture with two different diameters and cement-retained abutments, and tungsten carbide / carbon coated abutment screws were used. Disc shaped stainless steel metal tube was attached using resin-based temporary cement. The experimental group was divided into seven subgroups, including the platform switching shaped specimen that uses a regular abutment in the fixture with a wide diameter in USII system. A static load was increased to the metal tube at 5mm deviated point from the implant central axis until it reached the compression bending strength at a rate of 1mm/min. Then the deformations and patterns of fracture in threaded connection were compared. Results and Conclusion: 1. In the comparison between the Regular diameter, compression bending strength of SSII system was higher than USII system and GSII system. There was no significant difference between USII system and GSII system. 2. In the comparison between wide diameter, compression bending strength was increased in the order of GSII system, USII system, and SSII system. 3. In comparison between the implant diameter, compression bending strength of the wide diameter was greater than the regular diameter in any system(P<0.05). 4. There was no significant difference between the platform switching (III group) and the regular diameter (I group) in USII system. 5. In USII system, fracture of abutment screw and deformation of both fixture and abutment were observed in I, II and III subgroups. 6. Failure pattern of SSII system, which was the fracture of abutment screw and deformation of the abutment and fixture, was observed in both IV and V subgroups. Fracture of some fixtures was observed in subgroup V. 7. Failure pattern of GSII system, which was the fracture of the abutment screw and deformation of the fixture and the abutment, was observed in both VI and VII subgroups. Apart from other subgroups, subgroup VII demonstrated no bending neither the fracture at the top of the fixture. The compressive deformation of internal slope in the fixture was the only thing observed in subgroup VII.

STRESS ANALYSIS OF SUPPORTING TISSUES ACCORDING TO IMPLANT FIXTURE DIAMETER AND RESIDUAL ALVEOLAR BONE WIDTH (치조골 폭경과 임플랜트 고정체의 직경에 따른 지지조직의 응력분포)

  • Han, Sang-Un;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.506-521
    • /
    • 2007
  • Statement of problem: The cumulative success rate of wide implant is still controversial. Some previous reports have shown high success rate, and some other reports shown high failure rate. Purpose: The aim of this study was to analyze, and compare the biomechanics in wide implant system embeded in different width of crestal bone under different occlusal forces by finite element approach. Material and methods: Three-dimensional finite element models were created based on tracing of CT image of second premolar section of mandible with one implant embedded. One standard model (6mm-crestal bone width, 4.0mm implant diameter central position) was created. Varied crestal dimension(4, 6, 8 mm), different diameter of implants(3.3, 4.0, 5.5, 6.0mm), and buccal position implant models were generated. A 100-N vertical(L1) and 30 degree oblique load from lingual(L2) and buccal(L3) direction were applied to the occlusal surface of the crown. The analysis was performed for each load by means of the ANSYS V.9.0 program. Conclusion: 1. In all cases, maximum equivalent stress that applied $30^{\circ}$ oblique load around the alveolar bone crest was larger than that of the vertical load. Especially the equivalent stress that loaded obliquely in buccal side was larger. 2. In study of implant fixture diameter, stress around alveolar bone was decreased with the increase of implant diameter. In the vertical load, as the diameter of implant increased the equivalent stress decreased, but equivalent stress increased in case of the wide implant that have a little cortical bone in the buccal side. In the lateral oblique loading condition, the diameter of implant increased the equivalent stress decreased, but in the buccal oblique load, there was not significant difference between the 5.5mm and 6.0mm as the wide diameter implant. 3. In study of alveolar bone width, equivalent stress was decreased with the increase of alveolar bone width. In the vertical and oblique loading condition, the width of alveolar bone increased 6.0mm the equivalent stress decreased. But in the oblique loading condition, there was not a difference equivalent stress at more than 6.0mm of alveolar bone width. 4. In study of insertion position of implant fixture, even though the insertion position of implant fixture move there was not a difference equivalent stress, but in the case of little cortical bone in the buccal side, value of the equivalent stress was most unfavorable. 5. In all cases, it showed high stress around the top of fixture that contact cortical bone, but there was not a portion on the bottom of fixture that concentrate highly stress and play the role of stress dispersion. These results demonstrated that obtaining the more contact from the bucco-lingual cortical bone by installing wide diameter implant plays an important role in biomechanics.

The factors that influence postoperative stability of the dental implants in posterior edentulous maxilla

  • Kim, Yun-Ho;Choi, Na-Rae;Kim, Yong-Deok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.39
    • /
    • pp.2.1-2.6
    • /
    • 2017
  • Background: All clinicians are aware of the difficulty of installing a dental implant in posterior maxilla because of proximate position of maxillary sinus, insufficient bone width, and lower bone density. This study is to examine which factors will make the implantation in the posterior maxilla more difficult, and which factors will affect the postoperative implant stability in this region. Methods: Five hundred seventy-three fixtures on the maxilla posterior were included for this study from all the patients who underwent an installation of the dental implant fixture from January 2010 to December 2014 at the Department of Oral and Maxillofacial Surgery in Pusan National University Dental Hospital (Yangsan, Korea). The postoperative implant stability quotient (ISQ) value, fixture diameter and length, presence of either bone graft or sinus lift, and graft material were included in the reviewed factors. The width and height of the bone bed was assessed via preoperative cone beam CT image analysis. The postoperative ISQ value was taken just before loading by using the OsstellTM $mentor^{(R)}$ (Integration Diagnostics AB, Gothenburg, Sweden). The t test and ANOVA methods were used in the statistical analysis of the data. Results: Mean ISQ of all the included data was 79.22. Higher initial bone height, larger fixture diameter, and longer fixture length were factors that influence the implant stability on the posterior edentulous maxilla. On the other hand, the initial bone width, bone graft and sinus elevation procedure, graft material, and approach method for sinus elevation showed no significant impact associated with the implant stability on the posterior edentulous maxilla. Conclusions: It is recommended to install the fixtures accurately in a larger diameter and longer length by performing bone graft and sinus elevation.

FINITE ELEMENT ANALYSIS OF FIN-TYPE IMPLANT FIXTURES (Fin type 임플랜트 고정체의 유한요소법적 분석)

  • Kim, Su-Gwan;Chon, Chang-Gil;Hwang, Gab-Woon;Kim, Byung-Ock
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.29 no.1
    • /
    • pp.14-25
    • /
    • 2003
  • The purpose of this study was to analyze the stress pattern in different bone densities surrounding fin-type implant fixtures under the vertical and inclined loads ($30^{\circ}) of 200N. Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the loads were calculated by using the finite element method. Four different types of bicon implant fixture were used for this study. The geometries of implant fixtures to develop the model were used by a sales brochure and profile project. Three-dimensional finite element model of the mandible was developed with 6.0 mm implant in diameter wurrounded by approximately 2.5 mm of bone. Bone densities were classified according to the elastic modulus of the tree. The finite element program MSC PATRAN (MSC, Software Corp., USA) were used for analysis of stress distribution. The value of the Von-Mises stress, the pricipal stress, and the displacement on the implant fixtures under the vertical and inclined loads were decreased when the diameter of implant fixture was increased, and increased when the elastic modulus was decreased. The stress on implant fixture under the vertical and inclined loads was distributed through the length of implant fixtures in D3 and D4. The distribution of stress was influenced by the direction of loads. In the wide diameter of implants, the stress was developed at outer surface of bone. In conclusion, this study suggest that stress developing on the peri-implant tissues might be influenced by the dimension of implant, elastic modulus of bone, and direction of loads.