Photoelastic Stress Analysis of Single Implant Restoration According to Implant Fixture Size and Abutment Diameter

단일치 임플란트에서 고정체와 지대주 직경의 차이에 따른 광탄성 응력 분석

  • Lee, Jin-Han (Department of Prosthodontics, College of dentistry, Wonkwang University) ;
  • Cho, Hye-Won (Department of Prosthodontics, College of dentistry, Wonkwang University)
  • 이진한 (원광대학교 치과대학 치과보철학교실) ;
  • 조혜원 (원광대학교 치과대학 치과보철학교실)
  • Received : 2008.05.06
  • Accepted : 2008.09.25
  • Published : 2008.09.30

Abstract

The purpose of this study was to evaluate the pattern and the magnitude of stress distribution in the supporting tissues surrounding implant fixture with different diameter of implant fixtures(3i implant, Ø4.0, Ø5.0, Ø6.0mm and UCLA abutments(Ø4.1, Ø5.0, Ø6.0mm using photoelastic stress analysis. Photoelastic model was made with PL-2 resin(Measurements Group, Raleigh, USA) and three implants of each diameter were placed in the mandibular posterior edentulous area distal to the canine. Individual crowns were fabricated using UCLA abutments. Photoelastic stress analysis was carried out to measure the fringe order around the implant supporting structure under simulated loading conditions(15 lb, 30 lb). The results were as follows; 1. The more the diameter of implant fixture was increased, the less the stress concentration on cervical area of fixture was observed under loading. 2. Increasing mesiodistal diameter of implant superstructure had no much influence on stress distribution around implant fixture. 3. The use of smaller abutment had no influence on stress distribution around implant fixture. The use of smaller abutment diameter than that of implant fixture had no favorable effect on implant supporting tissue at biomechanical consideration.

이 연구의 목적은 임플란트 고정체와 지대주간의 직경 차이가 임플란트 지지조직에 발생하는 응력에 미치는 영향을 평가 하는 것이다. 본 연구에는 세 가지 직경(4.0, 5.0, 6.0㎜)의 3i 임플란트 고정체에 지대주의 직경을 달리하여 수복하고, 하중 조건(15, 30 lb)에 따라 임플란트 지지조직에 발생한 응력의 정도와 분포를 광탄성 응력 분석법을 이용하여 비교, 분석하였다. 연구결과 고정체의 직경이 증가할수록, 상부 보철물에 가해지는 하중에 대하여 고정체 변연부의 응력집중이 높게 나타났으며, 상부 보철물의 근원심 폭경을 증가시키는 것이나, 임플란트 고정체의 직경에 비해 작은 지대주를 사용하는 것은 고정체 주위의 응력양상에 영향을 주지 않았다.

Keywords

Acknowledgement

Supported by : 원광대학교

References

  1. Branemark PI. Osseointegration and its experimental background. J Prosthet Dent. 1983; 50: 399-410 https://doi.org/10.1016/S0022-3913(83)80101-2
  2. Adell R, Lekholm U, Brånemark PI. A 15 year study of osseointegrated edentulous jaw. J Oral Surg. 1981; 10: 387-416 https://doi.org/10.1016/S0300-9785(81)80077-4
  3. Sullivan DY. Prosthetic considerations for the utilization of osseointegrated fixtures in the partially edentulous arch. Int J Oral Maxillofac Implants. 1986;1(1): 39-45
  4. Henry PJ, Laney WR, Jemt T. Harris D, Krogh PH, Polizzi G, Zarb GA, Herrmann I. Osseointegrated implant for single-tooth replacement: a prospective 5-year multicenter study. Int J Oral Maxillofac Implants. 1996;11(4): 450-455
  5. Kim YS, OH TJ, Misch CE, Wang HL. Occlusal consideration in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Impl Res. 2005; 16: 26-35 https://doi.org/10.1111/j.1600-0501.2004.01067.x
  6. Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss : Myth or science? J Periodontol. 2002; 73: 322-333 https://doi.org/10.1902/jop.2002.73.3.322
  7. Adell R, Lekholm U, Rockler B, Brånemark PI, Lindhe J, Eriksson B, Sbordone L. Marginal tissue reactions at osseointegrated titanium fixtures (1):a 3-year longitudinal prospective study. Int J Oral Maxillofacial Surg. 1986;15: 39-52 https://doi.org/10.1016/S0300-9785(86)80010-2
  8. Hermann JS, Schoolfield JD, Schenk RK, Buser D, Cochran DL. Influence of the size of the microgap on crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged implants in the canine mandible. J Periodontol. 2001; 72: 1372-1383 https://doi.org/10.1902/jop.2001.72.10.1372
  9. Ericsson I, Persson LG, Berglundh T, Marinello CP, Lindhe J, Klinge B. Different types of inflammatory reaction in peri-implant soft tissues. J Clin Periodontol. 1996; 22(3): 255-261 https://doi.org/10.1111/j.1600-051X.1995.tb00143.x
  10. Cochran DL, Hermann JS, Schenk RK, Higginbottom FL, Buser D. Biologic width around titanium implants. A histometric analysis of the implanto- gingival junction around unloaded and loaded nonsubmerged implants in the canine mandible. J periodonol. 1997; 68: 186-198 https://doi.org/10.1902/jop.1997.68.2.186
  11. Berglundh T, Lindhe J. Dimention of the peri-implant mucosa. Biological width revisited. J Clin Periodontol. 1996; 23: 971-973 https://doi.org/10.1111/j.1600-051X.1996.tb00520.x
  12. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol. 2000; 71: 546-549 https://doi.org/10.1902/jop.2000.71.4.546
  13. Lazzara RJ, Porter SS. Platform switching : A new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dent. 2006; 26: 9-17
  14. Gardner DM. Platform switching as a means to achieving implant esthetics. NY State Dent J. 2005; 71: 34-37
  15. Xavier VN, Xavier RC, Carlos RA, Maribel ST. Benefits of an implantplatform modification technique to reduce crestal bone resorption. Implant Dentistry. 2006; 15(3): 313-320 https://doi.org/10.1097/01.id.0000226788.19742.32
  16. Gardner DM. Maintaining crestal bone around dental implant. literature review and clinical technique. Dent Today. 2006; 25(3): 76, 78-79
  17. Baumgarten H, Cocchetto R, Tiziano T, Meltzer A, Porter S. A new implant design for crestal bone preservation: Initial observations and case report. Pract Proced Aesthet Dent. 2005; 17(10): 735-740
  18. Kim YS, Kim CW, Jang KS, Lim YJ. Application of finite element analysis to evaluate platform switching. J Korean Academy of Prosthodontics. 2005;43: 727-735
  19. Jung JW, Lee CH. The effect of the difference of the implant fixture and abutment diameter for stress distribution. J Korean Academy of Prosthodontics. 2004; 42: 583-596
  20. Major MS. Wheeler's dental anatomy. physilogy and occlusion: 7th ed. WB Saunders Co 1993; 218-231
  21. Cehrell M, Duyck J, De Cooman M, Puers R, Naert I. Implant design and interface force transfer. A photoelastic and strain-gauge analysis. Clin. Oral Impl. Res. 2004; 15: 249-257 https://doi.org/10.1111/j.1600-0501.2004.00979.x
  22. Albrektsson T, Zarb GA, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants : a review and proposed criteria of success. Int J Oral Maxillofacial Implants. 1986; 1: 11-25
  23. Misch CE. Early crestal bone loss etiology and its effect on treatment planning for implants. Postgrad Dent. 1995; 2: 3-17
  24. Misch CE, Suzuki JB, Misch FM, Bidez MW. A positive correlation between occlusal trauma and peri-implant bone loss: Literature support. Implant Dent 2005; 14: 108-116 https://doi.org/10.1097/01.id.0000165033.34294.db
  25. Lemons JE, Phillips RW. Biomaterials for dental implants. In Misch CE, editor : Contemporary implant dentistry, St Louis, Mosby 1993; 262
  26. Piatelli A, Ruggeri A, Franchi M. An histologic and histomorphometric studyof bone reactions to unloaded and loaded non-submerged single implants in monkeys: a pilot study. J Oral Implantol. 1993; 19: 314-319
  27. Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberq B, Thomsen P.The soft tissue barrier at implants and teeth. Clin Oral Implants Res. 1991; 2(2): 81-90 https://doi.org/10.1034/j.1600-0501.1991.020206.x
  28. Lindhe J, Berglundh T, Ericsson I. Experimental breakdown of peri-implant and periodontal tissues: a study in the beagle dog. Clin Oral Implants Res. 1992; 3: 9-16 https://doi.org/10.1034/j.1600-0501.1992.030102.x
  29. Wallace S, Tarnow D. The biologic width around implants. Proceedings of the International Congress of Oral Implantologists, Oct 1995, Munich, Germany
  30. Wallace SS. Significance of the biologic width with respect to root form implants. Dent Implantol Update. 1994; 5: 25-29
  31. Jung ES, Jo KH, Lee CH. A finite element stress analysis of the bone around implant following cervical bone resorption. J Korean Academy of Implant Destistry. 2003; 22: 38-47
  32. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants : considerations based on a three dimentional finite element analysis. Clin Oral Implants Res. 2004; 15: 401-12 https://doi.org/10.1111/j.1600-0501.2004.01022.x
  33. Weinstein AM, Klawitter JJ, Anand SC, Schuessler R. Stress analysis of porus rooted dental implant. J Dent Res. 1976; 55: 772-777 https://doi.org/10.1177/00220345760550051001
  34. Scott I, Ash MM Jr. A six-channel intraoral transmitter for measuring occlusal forces. J Prosthet Dent. 1966; 16(1): 56-61 https://doi.org/10.1016/0022-3913(66)90112-0
  35. Haraldson T, Carlsson GE : Bite force and oral function in patients with osseointegrated implants. Scand J Dent Res. 1977; 85: 200-208
  36. Braun S, Bantleon HP, Hnat WP, Freudenthaler JW, Marcotte MR, Johnson BE. A study of bite force, part 1: Relationship to various physical characteristics. Angle Orthod. 1995; 65(5): 367-372
  37. Kwon JH, Choi MH, Kim YL, Cho HW. Three-dimensional finite element stress analysis of single implant restoration using different fixture and abutment screw diameters. J Korean Academy of Prosthodontics. 2005; 43:105-119