• 제목/요약/키워드: Implant distribution

검색결과 365건 처리시간 0.028초

A two-short-implant-supported molar restoration in atrophic posterior maxilla: A finite element analysis

  • Song, Ho-Yong;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권4호
    • /
    • pp.304-312
    • /
    • 2016
  • PURPOSE. The aim of this study was to investigate the stress distribution of 2-short implants (2SIs) installed in a severely atrophic maxillary molar site. MATERIALS AND METHODS. Three different diameters of internal connection implants were modeled: narrow platform (NP), regular platform (RP), and wide platform (WP). The maxillary first molars were restored with one implant or two short implants. Three 2SI models (NP-oblique, NP-vertical, and NP-horizontal) and four single implant models (RP and WP in a centered or cantilevered position) were used. Axial and oblique loadings were applied on the occlusal surface of the crown. The von Mises stress values were measured at the bone-implant, peri-implant bone, and implant/abutment complex. RESULTS. The highest stress distribution at the bone-implant interface and the peri-implant bone was noticed in the RP group, and the lowest stress distribution was observed in the 2SI groups. Cantilevered position showed unfavorable stress distribution with axial loading. 2SI types did not affect the stress distribution in oblique loading. The number and installation positions of the implant, rather than the bone level, influenced the stress distribution of 2SIs. The implant/abutment complex of WP presented the highest stress concentration while that of 2SIs showed the lowest stress concentration. CONCLUSION. 2SIs may be useful for achieving stable stress distribution on the surrounding bone and implant-abutment complex in the atrophic posterior maxilla.

하악피개의치에서 임플랜트의 식립각도에 따른 칸틸레버 길이의 감소효과가 응력분포 양상에 미치는 영향 -삼차원 유한요소법을 이용한 분석- (FINITE ELEMENT ANALYSIS OF THE EFFECT OF CANTILEVER AND IMPLANT ORIENTATION ON STRESS DISTRIBUTION IN A MANDIBULAR IMPLANT-SUPPORTED BAR OVERDENTURE)

  • 박준수;이성복;권긍록;우이형
    • 대한치과보철학회지
    • /
    • 제45권4호
    • /
    • pp.444-456
    • /
    • 2007
  • Statement of problem: Implant inclination and cantilever loading increse loads distributed to implants, potentially causing biomechanical complications. Controversy exists regarding the effect of the intentionally distal-inclined implant for the reduction of the cantilever length. Purpose: This study investigated the stress distribution at the bone/implant interface and prostheses with 3D finite element stress analysis by using four different cantilever lengths and implant inclinations in a mandibular implant-supported bar overdenture. Material and methods: Four 3-D finite element models were created in which 4 implants were placed in the interforaminal area and had four different cantilver lengths(10, 6.9, 4 and 1.5mm) and distal implant inclinations$(0^{\circ},\;15^{\circ},\;30^{\circ}\;and\;45^{\circ})$ respectively. Vortical forces of 120N and oblique forces of 45N were applied to the molar area. Stress distribution in the bone around the implant was analysed under different distal implant inclinations. Results: Analysis of the von Mises stresses for the bone/implant interfaces and prostheses revealed that the maximum stresses occurred at the most distal bone/implant interface and the joint of bar and abutment, located on the loaded side and significantly incresed with the implant inclinations, especially over $45^{\circ}$. Conclusion: Within the limitations of this study, it was suggested that too much distal inclination over 45 degrees can put the implant at risk of overload and within the dimension of the constant sum of a anterior-posterior spread and cantilever length, a distal implant inclination compared to cantilever length had the much larger effect on the stress distribution at the bone/implant interface.

임플랜트 Overdenture의 Bar설계에 따른 하악지지조직의 광탄성학적 응력분석 (PHOTOELASTIC STRESS ANALYSIS ON THE MANDIBLE CAUSED BY IMPLANT OVERDENTURE)

  • 강정민;방몽숙
    • 대한치과보철학회지
    • /
    • 제32권2호
    • /
    • pp.327-353
    • /
    • 1994
  • This study was performed to evaluate the effects of number and alignment of implant fixture and various bar designs on the retention of denture and the stress distribution. Six kinds of photoelastic mandibular models and nine kinds of overdenture specimens were designed. A unilateral vertical load was gradually applied on the right first molar to calculate the maximal dislodgement load of each specimen. A unilateral vertical load of 17 Kgf was applied on the right first molar and a vertical load of 10 Kgf was applied on the interincisal edge region. The stress pattern which developed in each photoelastic model was analyzed by the reflection polariscope. The results obtained were as follows: 1. The maximal dislodgement load reversely increased with the distance from the loading point to the implant fixture, while it linearly increased with that from the most posterior implant fixture to the mesial clip. The maximal dislodgement load also increased with the use of a cantilever bar. 2. Under the posterior vertical load, the stress to the supporting tissue of the denture base increased with the distance from the loading point to the implant future. The stress concentration on the apical area of the implant future reversely increased with the distance from the loading point to the implant future. 3. In the overdentures supported by two implant fixtures under the posterior vertical load. the specimen implanted on lateral incisor areas with a cantilever bar exhibited more favorable stress distribution than that without a cantilever bar. The specimen implanted on the canine areas without a cantilever bar, however, exhibited more favorable stress distribution. 4. In the overdentures supported by three implant fixtures. the specimen implanted ell the midline and canine areas exhibited more favorable stress distribution than that implanted oil the midline and the first premolar areas. 5. In the overdentures supported by four implant fixtures. the specimen implanted with two adjacent implant fixtures exhibited more favorable stress distribution than that implanted at equal distance under the posterior vertical load. 6. Under the anterior vertical load, the overdentures supported by three implant fixtures exhibited stress concentration on the supporting structure of the middle implant future. In overdentures supported by two or four implant futures, no significant difference was noted in stress distribution between the types of bars. These results indicate that the greater the number of implant fixtures, the better the stress distribution is. A favorable stress distribution may be obtained in the overdentures supported by two or three implant fixtures, if the location and the design of the bar are appropriate.

  • PDF

유한요소법을 이용한 임플란트 고정체의 삼각배열에 따른 지지골의 응력 분석 (Finite element stress analysis on supporting bone by tripodal placement of implant fixture)

  • 손성식;이명곤
    • 대한치과기공학회지
    • /
    • 제31권1호
    • /
    • pp.7-15
    • /
    • 2009
  • Purpose: This study was to propose the clear understanding for stress distribution of supporting bone by use of staggered buccal offset tripodal placement of fixtures of posterior 3 crown implant partial dentures. We realized posterior 3 crown implant fixed partial dentures through finite element modeling and analysed stress effect of implant arrangement location to supporting bone under external load using finite element method. Method: To understand stress distribution of 3 crown implant fixed partial dentures which have 2 different arrangement by finite element analysis. In each model, for loading condition, we applied $45^{\circ}$ oblique load to occlusal surface of crown and applied 100 N for 3 crown individually(total 300 N) for imitating possible oral loading condition. at this time, we calculated Von Mises stress distribution in supporting bone through finite element method. Result: When apply $45^{\circ}$ oblique load to in-line arrangement model, maximum stress result for 100 N for each 3 crown 47.566MPa. In tripodal placement, result for 1mm buccal offset tripodal placement implant model was maximum distributed load 51.418MPa, so result was higher than in-line arrangement model. Conclusion: In stress distribution result by placement of implant fixture, the most effective structure was in-line arrangement. The tripodal placement does not effective for stress distribution, gap cause more damage to supporting bone.

  • PDF

Splinted or Non-splinted: 다수의 인접한 치아 결손부 수복을 위한 임플란트 보철 (Splinted and non-splinted implant-supported restorations : prosthetic considerations for restoring multiple adjacent teeth)

  • 윤형인
    • 대한치과의사협회지
    • /
    • 제54권3호
    • /
    • pp.198-205
    • /
    • 2016
  • The purpose of this paper was to investigate the significance of splinted and non-splinted implant-supported restorations with an internal connection for multiple consecutively missing teeth. Upon examination of the effects of fixture-abutment connection, the distribution of occlusal load was favorable in splinted implant-prosthesis with an external connection, but effect of strain distribution was not significant in splinted implant-prosthesis with an internal connection. In splinted implant-prostheses for short implants, strain distribution was not affected by the method of retention. For cement-retained prostheses, the effect of strain distribution due to splinting was not significant. In clinical studies, non-splinted prostheses with an internal connection for multiple consecutively missing teeth showed high survival rate, mild marginal bone loss, and stable periodontal condition. However, failure to achieve optimal proximal contact between single-unit prostheses may lead to food impaction, and veneer fracture may be inevitable when the framework provides inadequate support in the proximal region. In conclusion, splinted implant-prosthesis is not an indication in all cases, and clinical consideration of its use should be based on the patient's oral condition, such as location and number of implants, formation of proximal contact, canine guidance, existence of parafunctional habit, and oral hygiene, when multiple consecutively missing teeth are replaced by internal connection type implant.

  • PDF

($Xive^{(R)}$)임플란트 식립시 환자 유형 및 식립부 분포와 생존율에 대한 후향적 연구 (A Retrospective study of the type of patients, the distribution of implant and the survival rate of $Xive^{(R)}$ implant)

  • 명우천;이중석;채경준;정의원;김창성;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제37권3호
    • /
    • pp.523-534
    • /
    • 2007
  • This study is an analysis of types of patients and distribution of implant site and survival rate of $Xive^{(R)}$ implant. The following results on patient type, implant distribution and survival rate were compiled from 324 implant cases of 140 patients treated at the periodontal dept. of Yonsei University Hospital and G dental clinic between February 2003 and April 2006. 1. There are no dissimilarities between men and women, with patients in their 30, 40, 50s accounting for 80% of patients and accounted for 82% of implant treatments; the largest share of patients and implant treatments. 2. Mn, posterior area. accounted for 57% of implant treatments followed by Mx. posterior area(29%), Mx, anterior area(8%) and Mn, anterior area(6%). 3. Partial edentulous patients treated by single crown and bridge-type prosthesis accounted for 96% and fully edentulous patient accounted for the remaining 4%. 4. The major cause of tooth loss is periodontal disease, followed by dental canes, trauma and congenital missing. 5, The distribution of bone quality for maxillae was 54,2% for type III, followed by 30.8% for type II, 15% for type IV and 0% for type I. As for mandible, the distribution was 63% for type II, followed by 34% for type III, 2,5% for type I and 0,5% for type IV. 6. The distribution of bone quantity for maxillae was 55% for type C, followed by 35% for type B, 8% for type D and 2% for type A. As for mandible, the distribution was 60% for type B, followed by 32% for type C, 7% for type A and 0% for type D. 7. The majority of implants were those of 9.5-13 mm in length(95%) and regular diameter in width(82%). 8. The total survival rate was 98%. The survival rate was 97% in the maxillae region and 99% in the mandible region. 9. The survival rate in type I was 83%, in type II was 99%, in type III was 97% and in type IV was 100%. As for the bone quantity, the survival rate in type A and D(100%) was most, followed by type B(99%) and type C(96%). The results showed that $Xive^{(R)}$ implant could be used satisfactorily compare for the other implant system. But we most to approach carefully in certain extreme condition especially with poor bone quality and quantity.

임플란트 환자의 유형 및 분포에 대한 연구 (The Study of Implant Patient's Type and Implant Distribution)

  • 홍성재;백정원;김창성;최성호;이근우;채중규;김종관;조규성
    • Journal of Periodontal and Implant Science
    • /
    • 제32권3호
    • /
    • pp.539-554
    • /
    • 2002
  • It has been approximately 40 years since $Br{{\aa}}nemark$ first introduced osseo-integration for implants in the early 1960s. Unlike crown and bridge or denture treatment, implant treatment helps preserve existing bone and improve masticatory functions. Thus, the awareness of implant treatment has grown rapidly among dentists and patients alike in Korea, as it becomes a widely accepted treatment. The following results on patients type and implant distribution were compiled from 1814 implant cases of 640 patients treated at the periodontal dept. of Y University Hospital during 1992 to 2001. 1. There are no dissimilarities between men and women, with patients in their 40,50s accounting for 49% of patients and 56% of implant treatments; the largest share of patients and implant treatments. 2. Mn. posterior area accounted for 59% of implant treatments followed by Mx. posterior area(21%), Mx anterior area(l4%) and Mn anterior area 2%. 3. Partial edentulous patients treated by single crown and bridge-type prosthesis accounted for 98% and fully edentulous patient accounted for the remaining 2% 4. The major cause of tooth loss is periodontal disease, followed by dental caries, trauma and congenital missing. Compared to women, men are more likely to suffer from tooth loss due to periodontal disease. Also, older people are more likely to suffer from tooth loss due to periodontal disease rather than dental caries. 5. The distribution of bone quality for maxillae was 52% for type III, followed by 23% for type II, 20% for type IV and 0% for type I. As for mandible, the distribution was 52% for type II, followed by 37% for type III, 7% for type IV and 4% for type I. 6. The distribution of bone quantity for maxillae was 49% for type C, followed by 34% for type B, 14% for type D, 3% for type A, and 0% for type E. As for mandible, the distribution was 52% for type B, followed by 35% for type C, 6% for type D, 3% for type A and 0% for type E. 7. The majority of implants were those of 10-14mm in length (80%) and regular diameter in width (79%). The results provided us with basic data on patient type, implant distribution, bone condition, etc. We wish that our results coupled with other research data helps assist in the further study for better implant success/survival rates, etc.

임플란트 환자의 분포 및 식립부 유형 (The Distribution of Implant Patients and the Type of Implant Site)

  • 박지은;윤정호;정의원;김창성;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제34권4호
    • /
    • pp.819-836
    • /
    • 2004
  • Nowdays, the awareness of implant treatment has grown rapidly among dentists and patients alike in Korea, as it becomes a widely accepted treatment. The reason is that unlike crown and bridge or denture treatment, implant treatment helps preserve existing bone and improve masticatory functions. So, It is needed understanding about the type, distribution of implant patient. The following results on patient type and implant distribution were compiled from 4433 implant cases of 1596 patients treated at the periodontal dept. of Y University Hospital during 1992 to 2004. 1. There are no dissimilarities between men and women, with patients in their 40, 50s accounting for 52.5% of patients and 57.5% of implant treatments; the largest share of patients and implant treatments. 2. Mn. posterior area accounted for 54.9% of implant treatments followed by Mx. posterior area(27.6%), Mx anterior area(11.9%) and Mn anterior area(5.6%). 3. Partial edentulous patients treated by single crown and bridge-type prosthesis accounted for 97.5% and fully edentulous patient accounted for the remaining 2.5%. 4. The major cause of tooth loss is periodontal disease, followed by dental caries, trauma and congenital missing. Also, older people are more likely to suffer from tooth loss due to periodontal disease rather than dental caries. 5. In the distribution of bone quality for maxillae, type III was most, followed by type II, r type IV and r type I. As for mandible, type II was most, followed by type III, type IV and for type I. 6. In the distribution of bone quantity for maxillae, type C was most, followed by type B, type D, type A, and for type E. As for mandible, type B was 52% most, followed by type C, type D, type A and type E. 7. The majority of implants were those of 1O-14mm in length (85.2%) and regular diameter in width (64%). The results provided us with basic data on patient type, implant distribution, bone condition, etc. We wish that our results coupled with other research data helps assist in the further study for better implant success/survival rates, etc.

FEA model analysis of the effects of the stress distribution of saddle-type implants on the alveolar bone and the structural/physical stability of implants

  • Kong, Yoon Soo;Park, Jun Woo;Choi, Dong Ju
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제38권
    • /
    • pp.9.1-9.9
    • /
    • 2016
  • Background: As dental implants receive masticatory stress, the distribution of stress is very important to peri-implant bone homeostasis and implant survival. In this report, we created a saddle-type implant and analyzed its stability and ability to distribute stress to the surrounding bone. Methods: The implants were designed as a saddle-type implant (SI) that wrapped around the alveolar bone, and the sizes of the saddles were 2.5, 3.5, 4.5, and 5.5 mm. The X and Y displacement were compared to clarify the effects of the saddle structures. The control group consisted of dental implants without the saddle design (CI). Using finite element modeling (FEM), the stress distribution around the dental implants was analyzed. Results: With saddle-type implants, saddles longer than 4.5 mm were more effective for stress distribution than CI. Regarding lateral displacement, a SI of 2.5 mm was effective for stress distribution compared to lateral displacement. ASI that was 5.6 mm in length was more effective for stress distribution than a CI that was 10 mm in length. Conclusions: The saddle-type implant could have a bone-gaining effect. Because it has stress-distributing effects, it might protect the newly formed bone under the implant.

임플랜트에 연결한 영구자석이 임플랜트 주위 뼈모세포의 분포와 부착에 미치는 영향에 관한 연구 (THE EFFECT OF PERMANENT MAGNET CONNECTING WITH DENTAL IMPLANT ON DISTRIBUTION AND ATTACHMENT OF OSTEOBLAST-LIKE CELL AROUND THE DENTAL IMPLANT)

  • 오나희;최부병;권긍록;백진;이성복
    • 대한치과보철학회지
    • /
    • 제43권4호
    • /
    • pp.511-518
    • /
    • 2005
  • Purpose: The purpose of this study is to find the effect of rare earth magnet's magnetic field of to the osteoblast around the implant by the means of observation number, and distribution around the implant which is connected to the permanent magnet but not, counted and compared by the number of cells attached to the surface of the implant. Material and method: The permanent magnets, made in the healing cap form, were connected to the implant future, and placed on the culture plate, The osteoblast-like cell: MC3T3-E1 were used for cell culture. As the control group, the implant were connected to normal healing cap, and cultured in the same conditions. 48 hours later, using inverted microscope, the number and distribution of osteoblast around the implant were observed, and 72 hours later, the number of the cells attached to the implant were counted. Results: As a result, the implant connected to the permanent magnet had proved to have a more concentrated cell distribution rate than the control group. The implant connected to the permanent magnet, neck area : which has about 10 gauss magnetic force, had more cells than apex area. The implant connected to the permanent magnet had proven to attach to the osteoblast more productively than control group's implant. Conclusions: This research showed that the magnetic field of the permanent magnet affected the distribution and growth rate of the osteoblast around the implant. In order to support this study, it also had need to monitor the progress of the permanent magnet specifically shown on the neck area, which has10 gauss magnetic force. So after additional research on the distribution and attachment of the cells, and further more, on bone formation, it will be concluded that the clinical applications ,such as immediate loading of implant treatment are possible.