• Title/Summary/Keyword: Implant Design

Search Result 469, Processing Time 0.023 seconds

The influence of Collar design on peri-implant marginal bone tissue (Collar design이 임플랜트 주위 변연골 흡수에 미치는 영향)

  • Kim, Jee-Hwan;Jung, Moon-Kyou;Moon, Hong-Suk;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.1
    • /
    • pp.53-64
    • /
    • 2008
  • Statement of problem: Peri-implant marginal bone loss is an important factor that affects the success of implants in esthetics and function. Various efforts have been made to reduce this bone loss by improving implant design and surface texture. Previous studies have shown that early marginal bone loss is affected by implant neck designs. Purpose: The purpose of this study was to examine the influence of laser microtexturing of implant collar on peri-implant marginal bone loss. Materials and methods: Radiographical marginal bone loss was examined in patients treated with implant-supported fixed partial dentures. Marginal bone level was examined with 101 implant fixtures installed in 53 patients at three periods(at the time of implantation, prosthetic treatment and 6-month after loading). Four types of implants were examined. The differences of bone loss between implants(ITI standard) with enough biologic width and implants(ITI esthetic plus, Silhouette IC, Silhouette IC Laser-$Lok^{TM}$) with insufficient biologic width have been compared. Resorption angles were examined at the time of prosthetic delivery and 6-month after loading. Results and Conclusion: Within the limitation of this study, the following results were drawn. 1. The marginal bone loss of ITI standard and Silhouette IC Laser-$Lok^{TM}$ was less than that of ITI esthetic plus and Silhouette IC(P<0.05). The marginal bone loss between ITI standard and Silhouette IC Laser-$Lok^{TM}$ had no significant statistical difference(P>0.05). There was no significant statistical difference between marginal bone loss of ITI esthetic plus and Silhouette IC(P>0.05). 2. There was no significant difference in marginal bone loss between maxilla and mandible(P>0.05). 3. There was no significant difference in resorption angle among four types of implants(P>0.05). The marginal bone of implants with supracrestal collar design of less than that of biologic width had resorbed more than those with sufficient collar length. The roughness and laser microtexturing of implant neck seem to affect these results. If an implant with collar length of biologic width, exposure of fixture is a possible complication especially in the anterior regions of dentition that demand high esthetics. Short smooth neck implant are often recommended in these areas which may lack the distance between microgap and the marginal bone level. In these cases, the preservation of marginal bone must be put into consideration. From the result of this study, it may be concluded that laser microtexturing of implant neck is helpful in the preservation of marginal bone.

Full mouth rehabilitation with Implant-Guided Surgery and Fixed prosthesis (Implant-Guided Surgery를 이용한 고정성 임플란트 보철물의 전악 수복 증례)

  • Kim, Seong-Mo;Park, Jin-Hong;Ryu, Jae-Jun;Shin, Sang Wan;Lee, Jeong-Yol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.126-133
    • /
    • 2018
  • The development of cone beam computerized tomography (CBCT) allows three-dimensional analysis of the patient's anatomy. The surgical guide is a combination of CBCT, computer-aided design/computer-aided manufacturing (CAD/CAM) and implant diagnostics software, which allows well planned prostheses design and ideal implant placement. Guided surgery minimizes possible anatomical damage and allows for more reproducible treatment planning. In this case, the operation time was shortened by using a surgical guide for multiple implants placement in a fully edentulous patient. Immediate loading were performed more easily using preliminary preparation of provisional prosthesis. The patient was satisfied with improved esthetics and chewing function.

Effect of Low Level Laser Irradiation on Osteoblast Cell Proliferation and Differentiation after Implant Placement

  • Oh, Min-Seok;Kim, Su-Gwan;Kim, Hak-Kyun;Moon, Seong-Yong;Lim, Sung-Chul;Son, Jun-Sik
    • Journal of Korean Dental Science
    • /
    • v.2 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • Objective : The purpose of this study was to evaluate the effects of low level lasers on bone healing and new bone formation around titanium dental implants in canine models. 18 oxidized surface treated implants and a Dens-bio laser were used. Study design : Low level lasers were irradiated with a total of 8J for 4 minutes by pulse wave type and 1 minute by continuous type. For the experimental group, a low level laser was used to irradiate the first premolar implant's insertion area at the time of insertion, a low level laser was used to irradiate the second premolar implant's insertion area daily for one week after implant insertion, and a low level laser was used to irradiate the third molar implant's insertion area daily for 2 weeks postoperatively. At the conclusion of the study, sacrificed tissue sections were made from investing tissue and observed under an optical microscope. Results : The rate of new bone formation around the implant showed no significant difference between the control group and the experimental group. New bone formation rates of the control and experimental group 2 weeks following implant placement were higher than that of immediately after implant placement and 1 week after implant placement. Conclusions : Based on these results, a low-level laser showed no statistically significant increase in bone formation following implant placement.

  • PDF

Mechanical and biological complication rates of the modified lateral-screw-retained implant prosthesis in the posterior region: an alternative to the conventional Implant prosthetic system

  • Lee, Jae-Hong;Lee, Jong-Bin;Kim, Man-Yong;Yoon, Joon-Ho;Choi, Seong-Ho;Kim, Young-Taek
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.2
    • /
    • pp.150-157
    • /
    • 2016
  • PURPOSE. The modified lateral-screw-retained implant prosthesis (LSP) is designed to combine the advantages of screw- and cement-retained implant prostheses. This retrospective study evaluated the mechanical and biological complication rates of implant-supported single crowns (ISSCs) inserted with the modified LSP in the posterior region, and determined how these complication rates are affected by clinical factors. MATERIALS AND METHODS. Mechanical complications (i.e., lateral screw loosening [LSL], abutment screw loosening, lateral screw fracture, and ceramic fracture) and biological complications (i.e., peri-implant mucositis [PM] and peri-implantitis) were identified from the patients' treatment records, clinical photographs, periapical radiographs, panoramic radiographs, and clinical indices. The correlations between complication rates and the following clinical factors were determined: gender, age, position in the jaw, placement location, functional duration, clinical crown-to-implant length ratio, crown height space, and the use of a submerged or nonsubmerged placement procedure. RESULTS. Mechanical and biological complications were present in 25 of 73 ISSCs with the modified LSP. LSL (n=11) and PM (n=11) were the most common complications. The incidence of mechanical complications was significantly related to gender (P=.018). The other clinical factors were not significantly associated with mechanical and biological complication rates. CONCLUSION. Within the limitations of this study, the incidence of mechanical and biological complications in the posterior region was similar for both modified LSP and conventional implant prosthetic systems. In addition, the modified LSP is amenable to maintenance care, which facilitates the prevention and treatment of mechanical and biological complications.

Retrospective study of conical connection dental implant (Ankylos dental Implant). (Conical connection 임프란트(Ankylos dental implant)에 대한 후향적 임상연구)

  • Yang, Byoung-Eun;Song, Sang-Hun;Shim, Hye-Won;Lee, Sang-Min;Kim, Seong-Gon
    • The Journal of the Korean dental association
    • /
    • v.44 no.11 s.450
    • /
    • pp.739-747
    • /
    • 2006
  • Objectives. The standardization of connection between fixture and abutment has not been defined. The success of dental implants was not always depends on connection. However, the connection mechanism is one of the most important things for dental implant treatment success. Most implant systems are very comparable in their design and engineering. They share many common characteristics and have similar strengths and weaknesses. Their significant weaknesses are connection, microgap and the resulting micromovement allowing bacterial contamination and bone loss. In the present study, we investigated the clinical performance of Ankylos implant (conical connection implant) Patients and Methods. The clinical performance of conical connection implant was studied under well-controlled clinical conditions. A total of 133 conical connection implants were placed in 50 patients from April 2005 to March 2006. The mean follow-up loading period of implants which was considered successful was 220$\pm$29 days. We recorded the age, sex, installation site, reason of edentulous region, bone density of installation site, diameter and length of dental implants and periods from installation to uncovering surgery using patients medical chart. Results Four Ankylos implants were lost during pre-loading period. 129 implants provided excellent clinical performance during 220$\pm$29 days on an average. The short-term success rate of this conical connection implant system was 96.99%.

  • PDF

EFFECTS OF BONE ENGAGEMENT TYPE&IMPLANT LENGTH ON STRESS DISTRIBUTION: A THREE DIMENSIONAL FINITE ELEMENT ANALYSIS (임플란트 매식조건에 따른 상, 하악골의 응력분포 양상에 대한 3차원 유한요소분석 연구)

  • Choi, Jeong-Hwa;Seo, Ki-Youl;Choi, Joo-Ho;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.5
    • /
    • pp.687-697
    • /
    • 1999
  • A finite element analysis has been utilized to analyze stress and strain fields and design a new configuration in orthopedics and implant dentistry. Load transfer and stress analysis at implant bone interface are important factors from treatment planning to long term success. Bone configuration and quality are different according te anatomy of expecting implantation site. The purpose of this study was to compare the stress distribution in maxilla and mandible accord-ing to implant length and bone engagement types. A three dimensional axi-symmetric implant model(Nobel Biocare, Gothenburg, Sweden) with surrounding cortical and cancellous bone were designed to analyze the effects of bone engagement and implant length on stress distribution. ANSYS 5.5 finite element program was utilized as an interpreting toot. Three cases of unicortical anchorage model with 7, 10, 13 mm length and four cases of bicortical anchorage model with 5, 7, 10 and 13 mm length were compared both maxillary and mandibular single implant situation. Within the limits of study, following conclusions were drawn. 1. There is a difference in stress distribution according to cortical and cancellous bone thickness and shape. 2. Maximum stress was shown at the top of cortical bone area regardless of bone engagement types. 3. Bicortical engagement showed less stress accumulation when compared to unicortical case overall. 4. Longer the implant future length, less the stress on cortical bone area, however there is no difference in mandibular bicortical engagement case.

  • PDF

Comparison of accuracy between free-hand and surgical guide implant placement among experienced and non-experienced dental implant practitioners: an in vitro study

  • Dler Raouf Hama;Bayad Jaza Mahmood
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.5
    • /
    • pp.388-401
    • /
    • 2023
  • Purpose: This study investigated the accuracy of free-hand implant surgery performed by an experienced operator compared to static guided implant surgery performed by an inexperienced operator on an anterior maxillary dental model arch. Methods: A maxillary dental model with missing teeth (No. 11, 22, and 23) was used for this in vitro study. An intraoral scan was performed on the model, with the resulting digital impression exported as a stereolithography file. Next, a cone-beam computed tomography (CBCT) scan was performed, with the resulting image exported as a Digital Imaging and Communications in Medicine file. Both files were imported into the RealGUIDE 5.0 dental implant planning software. Active Bio implants were selected to place into the model. A single stereolithographic 3-dimensional surgical guide was printed for all cases. Ten clinicians, divided into 2 groups, placed a total of 60 implants in 20 acrylic resin maxillary models. Due to the small sample size, the Mann-Whitney test was used to analyze mean values in the 2 groups. Statistical analyses were performed using SAS version 9.4. Results: The accuracy of implant placement using a surgical guide was significantly higher than that of free-hand implantation. The mean difference between the planned and actual implant positions at the apex was 0.68 mm for the experienced group using the free-hand technique and 0.14 mm for the non-experienced group using the surgical guide technique (P=0.019). At the top of the implant, the mean difference was 1.04 mm for the experienced group using the free-hand technique and 0.52 mm for the non-experienced group using the surgical guide technique (P=0.044). Conclusions: The data from this study will provide valuable insights for future studies, since in vitro studies should be conducted extensively in advance of retrospective or prospective studies to avoid burdening patients unnecessarily.

Shape Design Sensitivity Analysis for Interface Problem in Axisymmetric Elasticity

  • Choi, Joo-Ho;Lee, Boo-Youn;Han, Jung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.197-206
    • /
    • 2000
  • A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.

  • PDF

A retrospective clinical study of survival rate of the ITI $TE^{(R)}$ implant (ITI $TE^{(R)}$ 임플란트의 생존율에 관한 후향적 임상 연구)

  • Suh, Hyun-Kee;Chae, Gyung-Joon;Jung, Ui-Won;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho;Chai, Jung-Kyu;Kim, Chong-Kwan
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.3
    • /
    • pp.673-682
    • /
    • 2006
  • Recent study shows that implant design has a great impact on initial stability in bone. The ITI $TE^{(R)}$ implant, designed originally for immediate placement has a tapered/ cylindrical form which fits the anatomical shape of the natural alvelous or tooth root. The increased diameter at the collar region coupled with more threads lead to more bone contact and enhanced stability. The aim of this retrospective study is to evaluate the clinical use and the efficacy of recently introduced ITI TE implant with a new macro-design. The following results are compiled from 139 patients who received ITl TE implant surgery at the periodontal department. of Yonsei University Hospital between July 2002 and September 2005. 1. 139 patients received 173 ITl $TE^{(R)}$ implants in their maxilla and mandible (Mx 82, Mn 91). Posterior area accounted for 84% of the whole implant surgery, 2. In the distribution of bone quality, type III(41,0%) was the most, followed by type IV(41,0%) and type II (27.7%). As for the bone quantity, type B(43.9%) was the most, followed by type C(42.2%), type D(12.2%) and type A(1.7%). 3. 125 implants(83.9%) were treated by single crown, which accounted for the majority. 4, The total implant survival rate was 100% after a mean follow-up period of 21.2 months. This preliminary data with ITl $TE^{(R)}$ implant showed excellent survival rate although the majority of implants evaluated in this study were placed in the posterior region of the jaw and compromised sites.

STUDY ON RADIOGRAPHIC EVALUATION OF MARGINAL BONE LOSS AROUND OSSEOINTEGRATED IMPLANT AFTER FUNCTIONAL LOADING (기능적 부하 후 임플란트 주변의 골 흡수에 대한 방사선학적 연구)

  • Choi, Su-Jin;Chee, Young-Deok;Koh, Se-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.4
    • /
    • pp.240-247
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate marginal bone loss to the bone crest functionally loaded for up to eighteen months and also with regard to other variables of interest. Material and Methods: 135 endosseous implants(GS II, Osstem, South Korea) were placed in 35 patients. The design of GS II implant is straight with the microthread. Radiographic examinations were conducted at baseline (implant loading) and 3, 6, 9, 12 and 18 months after loading. Marginal bone level measurement was made from the reference point to the lowest observed point of contact of the marginal bone with the fixture. The reference point of the fixture was the border between the blasted surface and machined surface of the fixture. Results: Implants were on function for a mean 12.7 months(range, 3?18 months). For the 56 maxillary and 79 mandibular implants, mean marginal bone loss was 0.68 mm and 0.70 mm. Implants placed maxillary posterior area displayed more crestal bone loss than the other position. The difference between mesial and distal bone levels was statistically significant (p<0.05) with respective means of 0.51 mm and 0.62 mm. Also, The difference between bone graft group and no-bone graft group was statistically significant(p<0.05) with respective means of 0.38 mm and 0.66 mm. But no statistically significant influence of sex, type of surgery(one or two stage surgery), the implant length was observed(p>0.05). Conclusion: This study indicates the amount of marginal bone loss around implant has maintained a relative stable during follow-up periods.