• Title/Summary/Keyword: Impingment Plate

Search Result 3, Processing Time 0.016 seconds

A Numerical Study of Planar Laminar Impingement Jet with a Confinement Plate (제한면을 가지는 이차원 층류 충돌젯의 수치적 연구)

  • 강동진;오원태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.414-423
    • /
    • 1994
  • The planar laminar impingement jet with a confinement plate has been studied numerically. Discretzing the convection term with the QUICKER scheme, the full Navier-Stokes equations for fluid flow were solved using the well known SIMPLER algorithm. The flow characteristics with Reynolds number and jet exit velocity profile effects on it were considered for H=3, Re=200 - 2000. Results show that vortical flow forms in turn along the confinement and impingement plates as the Reynolds number increases and such a complicated flow pattern has never been reported prior. The jet exit velocity profile is shown to do an important role in determining the position of vortex flow and its size as well as in stagnation and wall jet flow region. Parabolic jet exit profile results in peak of skin friction 1.4-1.6 times greater than that of uniform profile. The channel height effects are also studied and shown to have an effect on flow pattern similar to that of Reynolds number. Also shown is that effects of the jet exit velocity profile becomes less significant over a certain channel height.

Experimental study to enhance cooling effects on total-coverage combustor wall (연소기 내벽의 전면 막냉각 사용시 효율 증대에 관한 연구)

  • Cho, Hyung-Hee;Goldstein, Richard J.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.165-173
    • /
    • 1997
  • The present study investigates heat/mass transfer for flow through perforated plates for application to combustor wall and turbine blade film cooling. The experiments are conducted for hole length to diameter ratios of 0.68 to 1.5, for hole pitch-to-diameter ratios of 1.5 and 3.0, for gap distance between two parallel perforated plates of 1 to 3 hole diameters, and for Reynolds numbers of 60 to 13, 700. Local heat/mass transfer coefficients near and inside the cooling holes are obtained using a naphthalene sublimation technique. Detailed knowledge of the local transfer coefficients is essential to analyze thermal stress in turbine components. The results indicate that the heat/mass transfer coefficients inside the hole surface vary significantly due to flow separation and reattachment. The transfer coefficient near the reattachment point is about four and half times that for a fully developed circular tube flow. The heat/mass transfer coefficient on the leeward surface has the same order as that on the windward surface because of a strong recirculation flow between neighboring jets from the array of holes. For flow through two perforated plate layers, the transfer coefficients on the target surface (windward surface of the second wall) affected by the gap spacing are approximately three to four times higher than that with a single layer.

A numerical study of flow and heat transfer characteristics varied by impingement jet in turbine blade cooling (터빈블레이드의 냉각에서 충돌제트에 의해 변화되는 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Lee, Jeong-Hui;Kim, Sin-Il;Yu, Hong-Seon;Choe, Yeong-Gi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.12
    • /
    • pp.4013-4026
    • /
    • 1996
  • A numerical simulation has been carried out for the jet impinging on a flat plate and a semi-circular concave surface. In this computation finite volume method was employed to solve the full Navier-Stokes equation based on a non-orthogonal coordinate with non staggered variable arrangement. The standard k-.epsilon. turbulent model and low Reynolds number k-.epsilon. model(Launder-Sharmar model) with Yap's correction were adapted. The accuracy of the numerical calculations were compared with various experimental data reported in the literature and showed good predictions of centerline velocity decay, wall pressure distribution and skin friction. For the jet impingement on a semi-circular concave surface, potential core length was calculated for two different nozzle(round edged nozzle and rectangular edged nozzle) to consider effects of the nozzle shape. The result showed that round edged nozzle had longer potential core length than rectangular edged nozzle for the same condition. Heat transfer rate along the concave surface with constant heat flux was calculated for various nozzle exit to surface distance(H/B) in the condition of same jet velocity. The maximum local Nusselt number at the stagnation point occurred at H/B = 8 where the centerline turbulent intensity had maximum value. The predicted Nusselt number showed good agreement with the experimental data at the stagnation point. However heat transfer predictions along the downstream were underestimated. This results suggest that the improved turbulence modeling is required.