• Title/Summary/Keyword: Impinging flow

Search Result 320, Processing Time 0.023 seconds

Study of the Impulse Wave Impinging upon an Inclined Flat Plate (경사판에 충돌하는 펄스파에 관한 연구)

  • Kweon, Y.H.;Lee, D.H.;Kim, H.D.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.438-443
    • /
    • 2001
  • Plate impingement of the impulse wave discharged from the open end of a duct is numerically investigated using a CFD method. Harten-Yee Total Variation Diminishing method is used to solve the unsteady, compressible flow governing equations. The Mach number, the flat plate inclination and the distance between the duct exit and inclined flat plate are changed to investigate their effects on the impinging flow field. The impulse wave impingement on the inclined flat plate depends on Mach number $M_s$ and the plate inclination $\psi$. The pressure distributions on the inclined flat plate show that for a small r/D, the peak pressure at the center of an inclined flat plate decreases with an increase in the plate inclination $\psi$ in the range of $\psi$ from $45^{\circ}$ to $60^{\circ}$ but for a large r/D, the peak pressure decreases with an increase in $\psi$ in the range of $\psi$ from $75^{\circ}$ to $90^{\circ}$. It is also found that for all of r/D, the peak pressure at the center of an inclined flat plate has a maximum value in $\psi=90^{\circ}$.

  • PDF

An Experimental Study on Flow Characteristics of a Supersonic Impinging Jet (초음속 충돌제트의 유동특성에 대한 실험적 연구)

  • 신필권;신완순;이택상;박종호;김윤곤
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.3
    • /
    • pp.10-19
    • /
    • 1998
  • When an under-expanded supersonic jet impinges on an inclined flat surface, a complex flow structure is established due to the intersection between the flat surface and the shock system of the free jet. This study reports on an experimental results of flows due to under-expanded axisymmetric sonic jets impinging on flat plate. Plate inclination from $60^{\cire}$~$90^{\cire}$ were investigated by means of detailed measurements of the surface pressure and schlieren photograph and surface flow visualization. The schlieren photograph are consistent with the pressure distribution and the surface flow visualization pictures are clearly related to the pressure distributions. The maximum wall pressure is found to be large on the inclined plate than on the perpendicular plate.

  • PDF

Heat transfer and flow characteristics of a circular jet impinging on a convex curved surface (볼록한 반구면에 충돌하는 원형제트의 열전달 및 유동특성)

  • Lee, Dae-Hui;Jeong, Yeong-Seok;Im, Gyeong-Bin;Kim, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.579-588
    • /
    • 1997
  • The heat transfer and flow measurements from a convex curved surface to a circular impinging jet have been made. The flow at the nozzle exit has a fully developed velocity profile. The jet Reynolds number (Re) ranges from 11,000 to 50,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the dimensionless surface curvature (d/D) from 0.034 to 0.089. The results show that the stagnation point Nusselt number (N $u_{st}$ ) increases with increasing value of d/D. The maximum Nusselt number at the stagnation point occurs at L/d .ident. 6 to 8 for all Re's and d/D's tested. For larger L/d, N $u_{st}$ dependency on Re is stronger due to an increase of turbulence in the approaching jet as a result of the more active exchange of momentum with a surrounding air. The local Nusselt number decreases monotonically from its maximum value at the stagnation point. However, for L/d=2 and Re=23,000, and for L/d.leq.4 and Re=50,000, the stream wise Nusselt number distributions exhibit secondary maxima at r/d .ident. 2.2. The formation of the secondary maxima is attributed to an increase in the turbulence level resulting from the transition from a laminar to a turbulent boundary layer.ndary layer.

Cavitating Flow in an Impinging-type Injector (충돌형 분사기 내의 캐비테이션 유동)

  • Jo, Won Guk;Ryu, Cheol Seong;Lee, Dae Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.80-86
    • /
    • 2003
  • An anaysis on the discharge performance of an impinging-type injector for cavitating flow has been conducted by both numerical and experimental method. The predicted discharge coefficient for cavitating flow agrees well with the measured data showing less than 1% discrepancy. For the case of non-cavitating flow analysis, the disagreement between CFD results and the experimental data is 8%. The discharge coefficient for the cavitating flow decreases with decrease in the Reynolds number. On the other hand, it increases slightly as the Reynolds number increases for the non-cavitating flow because of the reduced viscous effect. From the present study, it is confirmed that the fact that cavitation phenomena should be included to predict accurately the discharge performance of injectors for cavitating flow regime. The uniformity of density and velocity magnitude degraded at the injector exit, and the secondary flow strength through the injector orifice accentuated due to cavitation.

Mixing Performance of Unlike Doublet Impinging Liquid Jets (이중 충돌제트의 혼합 성능 연구)

  • Jo, Yong Ho;Lee, Seong Ung;Yun, Ung Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.82-91
    • /
    • 2003
  • Experiments to investigate the mixing performance of unlike doublet impinging jets are conducted. Reynolds number of simulants used in this study rages from 1.0 to 1.5 Cold flow test is performed to investigate the hydrodynamic effect and spray of the impinging jets are collected locally and calculated by using Rupe's mixing efficiency equation. Momentum exchanges and relative velocity ratio between two jets are taken as the main parameter to represent the effect of enlargement of the orifice diameter. As diameter ratio increases, the corresponding momentum ratio where maximum mixing efficiency occurs and relative velocity at the maximum mixing efficiency ranges 0.6 to 0.7, respectively. Penetration depth can be taken as a prominent parameter to estimate the mixing efficiency.

Spray Characteristics of Water-Gel Propellant by Impinging Injector (Water-Gel 모사 추진제의 충돌 분무 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Kim, Sang-Sun;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.11-14
    • /
    • 2009
  • The implementation of gelled propellants systems offers high performance, thrust-control, energy management of propulsion, storability, and high density impulse of solid propulsion. Present study focused on the spray behavior of liquid sheets formed by impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are then compared with experiments conducted on spray images formed by impinging jets concerning with air-blast effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure, closed rim pattern shape appeared. As increasing air mass flow rate(decreasing GLR), spray breakup and atomization phenomenon better improved and spray structure instabilities for the effect of air-blast are also increased.

  • PDF

The Effect of Nozzle Height on Heat Transfer of a Hot Steel Plate Cooled by an Impinging Water Jet (충돌수분류에 냉각되는 고온 강판의 열전달에 있어 노즐높이의 영향에 대한 연구)

  • Lee, Pil-Jong;Choi, Hae-Won;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.668-676
    • /
    • 2003
  • The effect of nozzle height on heat transfer of a hot steel plate cooled by an impinging liquid jet is not well understood. Previous studies have been based on the dimensionless parameter z/d. To test the validity of this dimensionless parameter and to investigate gravitational effects on the jet, stagnation velocity of an impinging liquid jet were measured and the cooling experiments of a hot steel plate were conducted for z/d from 6.7 to 75, and an inverse heat conduction method is applied for the quantitative comparison. Also, the critical instability point of a liquid jet was examined over a range of flow rates. The experimental velocity data for the liquid jet were well correlated with the dimensionless number 1/F $r_{z}$$^2$based on distance. It was thought that the z/d parameter was not valid for heat transfer to an impinging liquid jet under gravitational forces. In the cooling experiments, heat transfer was independent of z when 1/F $r_{z}$$^2$< 0.187(z/d = 6.7). However, it was found that the heat transfer quantity for 1/F $r_{z}$$^2$=0.523(z/d = 70) is larger 11% than that in the region for 1/F $r_{z}$$^2$=0.187. The discrepancy between these results and previous research is likely due to the instability of liquid jet.uid jet.

Performance Comparison of Pressure Sensitive Paint and Pressure Field Measurement of Oblique Impinging Jet (Pressure Sensitive Paint의 성능비교 및 경사충돌분류의 압력장 측정)

  • Lee, Sang-Ik;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.7
    • /
    • pp.1031-1038
    • /
    • 2002
  • The pressure sensitive paint (PSP) has recently received a considerable attention in the fields of aerodynamics and fluid mechanics as a new revolutionary optical technique to measure pressure fields on a body surface. In this study, the feasibility and effectiveness of the PSP pressure field measurement technique have been investigated experimentally. Seven different PSP formulations including two porphyrins(PtOEP and PtTFPP) and four polymers(Polystyrene, cellulous acetate butyrate, GP-197 and Silicon-708) were tested to check the performance and characteristics of each combination. The static calibration of each PSP formulation was carried out in a constant-pressure chamber. The PSP technique was applied to an oblique impinging jet flow to measure variation of pressure field on the impinging plate at on oblique jet angle of ${\theta}=60^{\circ}$. Pressure field images were captured by an 12bit intensified CCD(ICCD, $1K{\times}1K$)camera. As a result, the dynamic response of PSP depends on the oxygen permeability of polymer and the photochemical interaction between luminophore and polymer as well as the reaction of luminophore itself. The reaction of luminophore was changed by employing different polymers. In conclusion, Among 7 PSP formulation tested, the combination of PtTFPP and cellulous acetate butyrate show the best performance. In addition, the detail pressure field of an oblique high-speed impinging jet was measured effectively using the PSP technique.