• Title/Summary/Keyword: Impinging air jet

Search Result 129, Processing Time 0.027 seconds

Atomization Improvement of a Liquid Jet with Wall Impingement and its Application to a Jet Engine Atomizer

  • Shiga, Seiichi
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.176-189
    • /
    • 2006
  • In the present study, capability of improving the liquid atomization of a high-speed liquid jet by using wall impingement is explored, and its application to a jet engine atomize. is demonstrated. Water is injected from a thin nozzle. The liquid jet impinges on a wall positioned close to the nozzle exit, forming a liquid film. The liquid film velocity and the SMD were measured with PDA and LDSA, respectively. It was shown that the SMD of the droplets was determined by the liquid film velocity and impingement angle, regardless of the injection pressure or impingement wall diameter. When the liquid film velocity was smaller than 300m/s, a smaller SMD was obtained, compared with a simple free jet. This wall impingement technique was applied to a conventional air-blasting nozzle for jet engines. A real-size air-blasting burner was installed in a test rig in which three thin holes were made to accommodate liquid injection toward the intermediate ring, as an impingement wall. The air velocity was varied from 41 to 92m/s, and the liquid injection pressure was varied from 0.5 to 7.5 MPa. Combining wall impinging pressure atomization with gas-blasting produces remarkable improvement in atomization, which is contributed by the droplets produced in the pressure atomization mode. Comparison with the previous formulation for conventional gas-blasting atomization is also made, and the effectiveness of utilizing pressure atomization with wall impingement is shown.

  • PDF

Macroscopic Breakup Characteristics of Water Gel Simulants with Triplet Impinging Spray Jet (젤 모사 추진제 삼중 충돌 분사 제트의 거시적 분열 특성 연구)

  • Hwang, Tae-Jin;Lee, In-Chul;Koo, Ja-Ye
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.109-114
    • /
    • 2010
  • The implementation of gelled propellants systems offers high performance, energy management of liquid propulsion, storability, and high density impulse of solid propulsion. The present study focused on the macroscopic spray characteristics of liquid sheets formed by triplet impinging jets of non-Newtonian liquids which are mixed by Carbopol 941 0.5%wt. The results are compared to experiments conducted on spray images which formed by triplet impinging jets concerning with airassist effect at center orifice. When gel propellants are injected by doublet impinging jets at low pressure and high pressure, closed rim pattern shape appeared by polymeric effect from molecular force and showed inactive atomization characteristics, because of extensional viscosity related by restriction of atomization process and breakup time delay of turbulence transition. As increasing mass flow rate of the air(increasing GAR), spray breakup level is also increased.

An Experimental Study on the Flame Appearance and Heat Transfer Characteristics of Acoustically Excited Impinging Inverse Diffusion Flames (음향 가진된 충돌 역 확산화염의 화염형상과 열전달 특성에 관한 실험적 연구)

  • Kang, Ki-Joong;Lee, Kee-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.10
    • /
    • pp.3647-3653
    • /
    • 2010
  • An experimental investigation of the flame appearance and heat transfer characteristics in both unexcited and excited impinging inverse diffusion flames with a loud speaker has been performed. The flame is found to become broader and shorter (in length) with acoustic excitation. The heat flux at the stagnation point is increased with the acoustic excitation. The acoustic excitation is more effective in lean conditions than in rich conditions. The reasons for these behaviors are that acoustic excitation improves the entrainment of surrounding air into the jet. From this study, it is found that the maximum increase of 57% in the total heat flux is obtained at the stagnation point of $\Phi$=0.8. Therefore, it is ascertained that the excitation combustion can be adopted with effective instruments as a method for improving heat transfer in impinging jet flames.

Oblique Angle Effect of Impinging Jet on Heat Flow Characteristics of a Corrugated Structure (충돌제트의 경사각도가 파형 구조의 열유동 특성에 미치는 영향)

  • Hwang, Byeong Jo;Kim, Seon Ho;Joo, Won Gu;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.2
    • /
    • pp.83-93
    • /
    • 2017
  • A numerical analysis is made of the fluid flow and heat transfer characteristics in the corrugated structure that traps the spent air in the corrugations between impinging jets to reduce crossflow effects on downstream jets in the array. All computations are performed by considering three-dimensional, steady state, and incompressible flow by using the ANSYS-CFX 15.0 code. Averaged jet Reynolds number is 10,000. The oblique angles of impingement jets on the spanwise section are $70^{\circ}$, $80^{\circ}$, $90^{\circ}$, and the oblique angles of impingement jets on the streamwise section are $70^{\circ}$, $90^{\circ}$, $110^{\circ}$. The investigation focuses on the oblique angle influence of impinging jet array on the fluid flow and heat transfer characteristics of a corrugated structure.

Heat Transfer Enhancement by Trapezoid Rods in Impinging Jet System (충돌분류계에서 사다리형로드에 의한 열전달증진 효과)

  • 금성민
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.28-33
    • /
    • 2004
  • The objective of the study was to investigate the characteristics of heat transfer and flow in 2-dimensional impinging air jet system, in which trapezoid rods have been set up in front of impinging plate in order to increase heat transfer. Experiments were carried out first using without the rods to establish the baseline heat transfer performance. And this result compared with the experimentation with rods. When rods are installed in front of the impinging plate, the acceleration of the flow and the eddies due to the rods seem to contribute to the heat transfer enhancement. Heat transfer performance was best under the condition of C=1 n and as the pitch is 30 mm. In this case, maximum rate of heat transfer augmentation is about 1.62 times greater compared to that without trapezoid rods.

Heat Transfer Augmentation on Flat Plate with Two-Dimensional Rods in Impinging Air Jet System [3] : Effect of Rod Diameter (충돌판(衝突板) 근방(近傍)에 배열(配列)된 2차원(次元) rod가 충돌분류(衝突噴流) 열전달(熱傳達)에 미치는 영향(影響)[3] : rod직경변화(直徑燮化)에 대한효과(效果))

  • Kim, D.C.;Lee, Y.H.;Seo, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.295-302
    • /
    • 1990
  • The purpose of this study is augmentation of heat transfer without additional power in two-dimensional impinging air jet. The technique of heat transfer augmentation used in this experiment is to place rod bundles in front of the flat heated surface. The effects of rod diameter, nozzle-to-target plate distance and the nozzle exit velocity on heat transfer have been investigated. The main conclusions obtained from this experiment are as follows. High heat transfer augmentation is achieved by means of flow acceleration and thinning of boundary layer by placing rod bundles in front of the flat plate. Average heat transfer coefficient becomes maximum in the case of H/B=10,D=4mm. For H/B=2,D=4mm, maximum heat transfer augmentation has been determined to be about 1.5 times larger than that of the flat plate. Heat transfer augmentation by placing the rod bundles at 12m/s is to be about 2 times more than increasing nozzle exit velocity from 12m/s to 18m/s.

  • PDF

Heat transfer and flow characteristics of a circular jet impinging on a convex curved surface (볼록한 반구면에 충돌하는 원형제트의 열전달 및 유동특성)

  • Lee, Dae-Hui;Jeong, Yeong-Seok;Im, Gyeong-Bin;Kim, Dae-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.579-588
    • /
    • 1997
  • The heat transfer and flow measurements from a convex curved surface to a circular impinging jet have been made. The flow at the nozzle exit has a fully developed velocity profile. The jet Reynolds number (Re) ranges from 11,000 to 50,000, the dimensionless nozzle-to-surface distance (L/d) from 2 to 10, and the dimensionless surface curvature (d/D) from 0.034 to 0.089. The results show that the stagnation point Nusselt number (N $u_{st}$ ) increases with increasing value of d/D. The maximum Nusselt number at the stagnation point occurs at L/d .ident. 6 to 8 for all Re's and d/D's tested. For larger L/d, N $u_{st}$ dependency on Re is stronger due to an increase of turbulence in the approaching jet as a result of the more active exchange of momentum with a surrounding air. The local Nusselt number decreases monotonically from its maximum value at the stagnation point. However, for L/d=2 and Re=23,000, and for L/d.leq.4 and Re=50,000, the stream wise Nusselt number distributions exhibit secondary maxima at r/d .ident. 2.2. The formation of the secondary maxima is attributed to an increase in the turbulence level resulting from the transition from a laminar to a turbulent boundary layer.ndary layer.

A Numerical Study on Beat Transfer from an Aluminum Foam Heat Sink by Impinging Air Jet in a Confined Channel (충돌 공기제트에서 국한 유로 내 발포 알루미늄 방열기의 열전달 수치해석)

  • Lee, Sang-Tae;Kim, Seo-Young;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.6
    • /
    • pp.883-892
    • /
    • 2002
  • A numerical study has been carried out to investigate the flow and heat transfer from an aluminum foam heat sink in a confined channel. A uniform heat flux is given at the bottom of the aluminum foam heat sink, which is horizontally placed on the heated surface. The channel walls are assumed to be adiabatic. Cold air is supplied from the top opening of the channel and exhausted to the channel outlet. Comprehensive numerical solutions are acquired to the governing Wavier-Stokes and energy equations, using the Brinkman-Forchheimer extended Darcy model and the local thermal non-equilibrium model f3r the region of porous media. Details of flow and thermal fields are examined over wide ranges of the principal parameters; i.e., the Reynolds number Re, the height of heat sink h/H, porosity $\varepsilon$and pore diameter ratio $R_{H}$.

Heat Transfer Enhancement by the Perforated Plate of Round Impinging Air Jets (원형충돌제트에서 다공질판에 의한 열전달 향상)

  • Kim, Yun-Taek;Lee, Yeong-Min;Won, Se-Yeol;Lee, Dae-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.4
    • /
    • pp.475-484
    • /
    • 2001
  • The purpose of this study is to investigate the heat transfer augmentation using the perforated plate placed in front of a target plate in an axisymmetric impinging air jet system. The new liquid crystal technique using neural networks with median filtering is used to determine the Nusselt number distributions on the target surface. The experiments were made for the jet Reynolds number (Re) 23,000. The effects of the pitch-to-diameter (p/d1) from 1.5 to 2.5 in the perforated plate, the hole diameter on perforated plate (d1) from 4㎜ to 12㎜, the perforated plate to target surface distance (z/d1) from 1 to 3, and the nozzle-to-target surface distance (L/d) from 2 to 10 on the heat transfer characteristics were experimentally investigated. It was found that when the perforated plate was located between the nozzle exit and the target plate, the average heat transfer rate at the stagnation region corresponding to r/d$\leq$1.0 was increased up to the maximum 2.3 times compared to the case without the perforated plate.

Impingement Heat Transfer Within a Row of Submerged Circular Water Jets (1열 원형 서브머지드 충돌수분류군에 의한 열전달의 실험적 연구)

  • Ohm, Ki-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.538-544
    • /
    • 2010
  • An experimental investigation is presented to study the effect nozzle spacing, jet to plate spacing and Reynolds number on the local heat transfer to normally upward impinging submerged circular water jets on a flat heated surface. Nozzle arrays are a single jet(nozzle dia. = 8 mm), a row of 3 jets(nozzle dia. = 4.6 mm, nozzle spacing = 37.5 mm) and a row of 5 jets(nozzle dia. = 3.6 mm, nozzle spacing = 25 mm), and jet to plate spacing ranging from 16∼80 mm(H/D = 2∼10) is tested. Reynolds number based on single jet exit condition is varied 30000∼70000($V_o$ = 3∼7 m/s). Except for the condition of H/D = 10, the average Nusselt number of multi-jet is higher than that of single jet. For H/D = 2, average Nusselt number is increased by 50.3∼82.5% for a row of 3 jets and by 52.9∼65.2% on a row of 5 jets when compared to the average Nusselt number on the single jet.