• Title/Summary/Keyword: Impinging air jet

Search Result 129, Processing Time 0.03 seconds

Numerical Analysis of Micro-jet Array Cooling Device with Various Configurations

  • Jung, Yang-Ki;Lee, In-Chan;Ma, Tae-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.2
    • /
    • pp.39-45
    • /
    • 2005
  • Numerical and visualization procedures are used in a finite difference grid to analyze and better understand the heat transfer in the MEMS based air micro-jet array (MIA) impingement cooling device. The Navier-Stokes (NS) equations with incompressible flow are solved using an implicit procedure. The temperature contour and velocity vector visualization diagrams are used for illustration. The computed temperature distribution at the bottom of the MIA is in good agreement with the experimental measurement data. The parameters are investigated to improve the efficiency of heat transfer in the MIA. The optimum configuration of the MIA is suggested. The present modeling explains the flow phenomenon and yields valuable information to understand the flow and heat transfer in MIA.

Effect of Arrays of Impinging Jets with Crossflow on Heat/Mass Transfer (배열충돌제트에서 횡방향유동성분에 따른 열/물질전달 특성 고찰)

  • Yoon, Pil-Hyun;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.195-203
    • /
    • 2000
  • The local heat/mass transfer coefficients for arrays of impinging circular air jets on a plane surface are determined by means of the naphthalene sublimation method. Fluid from the spent jets is constrained to flow out of the system in one direction. Therefore, the spent fluid makes a crossflow in the confined space. The present study investigates effects of jet-orifice-plate to impingement-surface spacing and jet Reynolds number. The spanwise- and overall-averaged heat/mass transfer coefficients are obtained by numerical integrating the local heat transfer coefficients. The local maximum heat/mass transfer coefficients move further in the downstream direction due to the increase of crossflow velocity. At the mid-way between adjacent jets, the heat/mass transfer coefficients have a small peak owing to the collision of the adjacent wall jets and are affected strongly by the crossflow. The effect of the crossflow occurs strongly at the small orifice-to-impingement surface distance.

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • v.38 no.4
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.

Effect of Heat Transfer Augmentation by Square Rod Array in Impinging Air Jet System(Heat Transfer Characteristic of Potential Core Region) (충돌공기분류계에서 사각 ROD에 의한 전열증진 효과(포텐셜코어영역에서의 전열특성))

  • Kum, Seong-Min;Oh, Soo-Cheol;Seo, Jeong-Yoon
    • Solar Energy
    • /
    • v.15 no.1
    • /
    • pp.85-94
    • /
    • 1995
  • This research has been proceeded over the potential core region(H/B=2) of two-dimensional impinging air jet sytem, in which square rods(width of 6 mm) has been set up in front of heating surface in order to increase heat transfer. The objective of this research was to investigate the characteristics of heat transfer and air flow, in eases of the clearance from rods to heating surface(C=1, 2, 4, 6 mm) and the pitch between each rods(P=30, 40, 50 mm) changed. And this research compared the above with the experimentation without rods. As result, heat transfer performance was best under the condition of C=1mm, in case clearance changed, and there was no serious difference in the effect of heat transfer augmentation in the case of pitch of rods changed.

  • PDF

Augmentation of Heat Transfer for Circular Water Jet Impinging on a Cylindrical Inner Surface (충돌수분류(衝突水噴流)에 의한 원통내면(圓筒內面)에서의 열전달증진(熱傳達增進)에 관한 연구(硏究))

  • Ohm, K.C.;Woo, C.K.;Choi, G.G.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.279-287
    • /
    • 1990
  • An experimental study of the heat transfer characteristics between circular water jet and cylindrical inner surface is presented. The ratios of the semi-cylinder's inner diameter and the nozzle outlet diameter were varied parametrically, as were the Reynolds number and the supplementary water heights. The measurements showed that cirucmferential distribution of the heat transfer coefficient peaked at the stagnation point and, there occurred a kind of a secondary maximum of heat transfer that moved toward to stagnation point as the ratio d/D increased. The local heat transfer coefficient increases as the Reynolds number becomes larger, and the rate of increase is subjected to the influence of d/D & position of angle. Also, optimum heights of supplementary water which brings about the augmentation of heat transfer are S/D=1 for the stagnation point, the position of $15^{\circ}$ & $30^{\circ}$ angle, but for the positions of $45^{\circ}$ angle (d/D=10~11.67), $60^{\circ}$ & $75^{\circ}$ angle, the heat transfer coefficients in the case of using supplementary water are smaller than simple jet (S/D=0).

  • PDF

NUMERICAL INVESTIGATION OF AERODYNAMIC INTERACTION OF AIR-LAUNCHED ROCKETS FROM A HELICOPTER (헬리콥터로부터 발사된 로켓의 공력 간섭 현상에 대한 수치적 연구)

  • Lee, B.S.;Kim, E.J.;Kang, K.T.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.36-41
    • /
    • 2011
  • Numerical simulation of air-launched rockets from a helicopter was conducted to investigate the aerodynamic interference between air-launched rocket and helicopter. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between rocket and rocket launcher. The flow solver was coupled with six degree-of-freedom equation to predict the trajectory of free-flight rockets. For the validation, calculations were made for the impinging jet with inclined plate. The rotor downwash of helicopter was calculated and applied to simulation of air-launched rocket. It is shown that the rotor downwash has non-negligible effect on the air-launched rocket and its plume development.

Impingement heat transfer within 1 row of circular water jets : Part 1-Effects of nozzle configuration (1열 원형 충돌수분류군에 의한 열전달의 실험적 연구 (제1보, 노즐형상의 영향))

  • 엄기찬;김상필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.50-58
    • /
    • 2000
  • Experiments were carried out to obtain the effects of nozzle configuration and jet to jet spacing on the heat transfer characteristics of single line of circular water jets impinging on a constant heat flux plane surface. The nozzle configurations are Cone type, Reverse cone type and Vertical circular type, and the nozzle arrays are single jet(nozzle dia. 8 mm), 1 row of 3 jets and 1 row of 5 jets. Jet velocities ranging from 3m/s to 8m/s were investigated for the nozzle to target plate spacing of 80 mm. For the Cone and Reverse cone type nozzle arrays, the average Nusselt number of 1 row of 5 jets was larger than that of 1 row of 3 jets at Re$_{D}$<45000, but that of 1 row of 3 jets was larger than that of 1 row of 5 jets at $Reo\le45000$. For the Vertical circular type nozzle, however, the average Nusselt number of 1 row of 3 jets was larger than that of 1 row of 5 jets at all jet velocities. In the condition of fixed mass flow rates, the maximum heat transfer augmentation was obtained for 1 row of 5 jets and was over 2 times larger than that of the single jet for all nozzle configurations. The nozzle configurations that produce the maximum average Nusselt number are as follows: For 1 row of 3 jets, the Vertical circular type at $Reo\le45000$ and the Reverse cone type at $Reo\le45000$. But, they are the Reverse cone type at Re$_{D}$<55000 and the Vertical circular type at$Reo\le55000$ for 1 row of 5 jets.

  • PDF

Numerical Simulation of Edgetone Phenomenon in Flow of a Jet-edge System Using Lattice Boltzmann Model

  • Kang, Ho-Keun
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.1
    • /
    • pp.1-15
    • /
    • 2008
  • An edgetone is the discrete tone or narrow-band sound produced by an oscillating free shear layer, impinging on a rigid surface. In this paper, 2-dimensional edgetone to predict the frequency characteristics of the discrete oscillations of a jet-edge feedback cycle is presented using lattice Boltmznan model with 21 bits, which is introduced a flexible specific heat ratio y to simulate diatomic gases like air. The blown jet is given a parabolic inflow profile for the velocity, and the edges consist of wedges with angle 20 degree (for symmetric wedge) and 23 degree (for inclined wedge), respectively. At a stand-off distance w, the edge is inserted along the centerline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downward. Present results presented have shown in capturing small pressure fluctuating resulting from periodic oscillation of the jet around the edge. The pressure fluctuations propagate with the speed of sound. Their interaction with the wedge produces an irrotational feedback field which, near the nozzle exit, is a periodic transverse flow producing the singularities at the nozzle lips. It is found that, as the numerical example, satisfactory simulation results on the edgetone can be obtained for the complex flow-edge interaction mechanism, demonstrating the capability of the lattice Boltzmann model with flexible specific heat ratio to predict flow-induced noises in the ventilating systems of ship.

A STUDY ON THE FLOW CHARACTERISTICS OF AIR-KNIFE USING A CONSTANT EXPANSION RATE NOZZLE (팽창률이 일정한 노즐을 사용한 AIR-KNIFE 유동에 관한 연구)

  • Lee, Dong-Won;Kang, Nam-Cheol;Kim, Guen-Young;Kwon, Young-Doo;Kwon, Soon-Bum
    • Journal of computational fluids engineering
    • /
    • v.13 no.4
    • /
    • pp.1-7
    • /
    • 2008
  • In the process of continuous hot-dip galvanizing, it is well known that the gas wiping through an air knife system is most effective because of its uniformity in coating thickness, possibility of thin coating, workability in high speed, and simplicity of control. However, gas wiping used in the galvanizing process brings about a problem of splashing at the strip edge above a certain high speed of process. It is also known that the problem of edge splashing is more harmful than that at the mid strip surface. For a given liquid(of a certain viscosity and surface tension), the onset of splashing mainly depends upon the strip velocity, the gas-jet pressure, and the nozzle's stand-off distance. In these connections in the present study, we proposed three kinds of air knife system having nozzles of constant expansion rate, and compared the jet structures issuing from newly proposed nozzle systems with the result by a conventional one. In numerical analysis, the governing equations are consisted of two-dimensional time dependent Navier-Stokes equations, and the standard k-${\varepsilon}$ turbulence model is employed to solve turbulence stress and so on. As the result, it is found that we had better use the constant expansion-rate nozzle which can be interpreted from the point view of the energy saving for the same coating thickness. Also, we better reduce the size of separation bubble and enhance the cutting ability at the strip surface, by using an air-knife having constant expansion-rate nozzle.