• Title/Summary/Keyword: Impinging Jet Nozzle

Search Result 213, Processing Time 0.024 seconds

An Experimental Study on the Flow Characteristics with the Impinging Angles of Defrost Nozzle Jet Inside a Vehicle Passenger Compartment (차실내 Defrost 노즐 분류의 충돌각 변화에 따른 유동특성에 관한 실험적 연구)

  • Kim, Duck-Jin;Kim, Hyun-Joo;Rho, Byung-Joon;Lee, Jee-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.1024-1032
    • /
    • 2007
  • The flow characteristics with the impinging angles of defrost nozzle jet inside a commercial vehicle passenger compartment were investigated experimentally by using the two-dimensional duct-nozzle model. The shape of the nozzle contraction was designed according to the curved line of cubic equation to the vertical plan of the flow direction. The impinging angles, defined as the angle between nozzle axis and a vertical line to the windshield, were varied from the $0^{\circ}\;to\;80^{\circ}$. The mean velocity distributions, the half-widths, and the momentum distributions with the cases of both the free jet and the impinging jet onto the dummy windshield were measured. The impinging jet flows similarly with wall jet from $X/b_o=20$, and the impinging angle has an effect on the half-width of the impinging jet. The momentum distributions onto the windshield increased with the increase of impinging angle, and then their inflection point was observed around the impinging angle of $60^{\circ}$.

Characteristics of Supersonic Jet Impingement on a Flat Plate

  • 홍승규;이광섭;박승오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.134-143
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

An Experimental Study on Flow Characteristics of Impinging Jet (1) (충돌제트의 유동특성에 관한 실험적 연구(1))

  • 배석태;김동균;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.403-408
    • /
    • 2001
  • The flow characteristics of impinging jet flow are affected greatly by nozzle plate to distance. An sharp edge nozzle was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10 mm(d). Therefore, the flow characteristics on the impinging jet plate can be changed largely by the control of main flow. In the parent study, we investigate the effects of main flow length, its variable is nozle plate to distances(12d, 10d, 8d, 6d and 4d)

  • PDF

Characteristics of Turbulent Impinging and Wall Jet Flow for a Circular Nozzle with Various Exit Wall Thickness (다양한 벽면 두께를 갖는 원형 노즐에서 분사되는 난류 충돌 및 벽면 제트 유동장 특성)

  • Yang, Geun-Yeong;Yun, Sang-Heon;Son, Dong-Gi;Choe, Man-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.6
    • /
    • pp.751-757
    • /
    • 2001
  • An experimental study of impinging jet-flow structure has been carried out for a fully developed single circular jet impingement cooling on a flat plate, and the effect of the wall thickness at nozzle exit edge is investigated. Impinging jet flow structures have been measured by Laser-Doppler Velocimeter to interpret the heat transfer results presented previously by Yoon et al.(sup)(10) The peaks of heat transfer rate are observed near the nozzle edge owing to the radial acceleration of jet flow when the nozzle locates close to the impingement plate. The growth of the velocity fluctuations in the wall jet flow is induced by the vortices which originate in the jet shear layer, and consequently the radial distribution of local Nusselt numbers has a secondary peak at the certain radial position. As a wall of circular pipe nozzle becomes thicker for small nozzle-to-target distance, the entrainment can be inhibited, consequently, the acceleration of wall jet flow is reduced and the heat transfer rate decreases.

Characteristics of Supersonic Jet Impingement on a Flat Plate (평판에 충돌하는 초음속 제트에 유동특성)

  • Hong Seung-kyu;Lee Kwang-Seop;Park Seung-O
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.32-40
    • /
    • 2001
  • Viscous solutions of supersonic jet impinging on a flat plate normal to the flow are simulated using three-dimensional Navier-Stokes solver. The jet impinging flow structure exhibits such complex nature as shock shell, plate shock and Mach disk depending on the flow parameters. Among others, the dominant parameters are the ratio of the nozzle exit pressure to the ambient pressure and the distance between the nozzle exit plane and the impinging plane. In the present study, the nozzle contour and the pressure ratio are held fixed, while the jet impinging distance is varied to illuminate the characteristics of the jet plume with the distance. As the plate is placed close to the nozzle at 3D high, the computed wall pressure at or near the jet center oscillates with large amplitude with respect to the mean value. Here D is the nozzle exit diameter. The amplitude of wall pressure fluctuations subsides as the distance increases, but the maximum mean pressure level at the plate is achieved when the distance is about 4D high. The frequency of the wall pressure is estimated at 6.0 kHz, 9.3 kHz, and 10.0 kHz as the impinging distance varies from 3D, 4D, to 6D, respectively.

  • PDF

The Study on Flow Characteristics of Impinging Jet Using PIV (PIV를 이용한 충돌제트의 유동특성에 관한 연구)

  • Kim, D.K.;Kim, J.H.;Kim, S.P.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.717-722
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozzle inlet velocity. An circular sharp edged nozzle type$(45^{\circ})$ was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow. In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers(Re=1500, 3000, 4500, 6000 and 7500).

  • PDF

A Study about Flow Characteristics of Impinging Jet for Thermal Control (전열제어를 위한 충돌제트의 유동특성에 관한 연구)

  • 김동균;김정환;배석태;김시범;이영호
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.34-39
    • /
    • 2001
  • A present study is the flow characteristics of impinging jet by PIV measurement and numerical analysis. The flow characteristics of impinging jet flow are affected greatly by nozzle inlet velocity. An circular sharp edged nozzle type($45^{\circ}$) was used to achieve uniform mean velocity at the nozzle inlet, and its diameter is 10mm(d). Therefore, the flow characteristics on the impinging jet can be changed largely by the control of main flow. In this parent study, we investigate the effects of inlet velocity, its variable is nozzle inlet Reynolds numbers(Re=1500m 3000, 4500, 6000 and 7500)

  • PDF

Experimental comparison on the noise characteristics of free and impinging jets (자유분류와 충돌분류의 소음특성에 관한 실험적 비교)

  • 이동훈
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.2
    • /
    • pp.83-89
    • /
    • 1996
  • The objective of this study is to find experimentally the characteristics of the noise generated by the impinging jet on the normal plate, and also to compare the noise characteristics of the impinging jet with those of the free jet. The experiment is performed for the measurement of the noise specturm, the noise power, and the directivity for the free and impinging jets. From the experiment. it is found that the power of noises generated by the free jet as well as the impinging jet is proportional to the eighth power of the jet velocity through the circular converging nozzle, and that the noise power of the impinging jet is 15dB as high as one of the free jet when the plate distance is about within one to three times the nozzle diameter at the pressure ratio 1.39. The sound pressure level of the impinging jet depends upon the jet pressure and the plate distance. The plate distance with the maximum overall sound pressure level is increased with the jet pressure. The directivities with 1/3 octave band frequency for both the free jet and the impinging jet are greatly influenced by the convection effect.

  • PDF

A Study of Supersonic Twin Jet Impinging on a Plate (평판에 충돌하는 초음속 Twin 제트에 관한 연구)

  • Park, Soon-Yoong;Yoon, Sang-Ho;Baek, Seung-Cheol;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.508-513
    • /
    • 2003
  • Experiments are performed to investigate the detailed structure of underexpanded twin jet impinging on a perpendicular flat plate. The major parameters, such as nozzle operating pressure and nozzle spacing, are varied to create different jet flow fields resulted from the complicated interactions of the twin jets. From the surface pressure measurements and shadowgraphs taken by schlieren optical system, the jet structure is strongly dependent on the nozzle operation pressure and the spacing. The results obtained show that the closer nozzle spacing may induce to decrease the diameter of the Mach disk within the first shock cell in the underexpanded twin jet. With the increasing nozzle operating pressure and decreasing the nozzle spacing, a new shock wave appears at the entrainment region between the two jets, due to the enhancement of mixing effect of the both jets. The closer nozzle spacing makes the overall impinging pressure level higher, while severe pressure oscillation along the axis of symmetry. Furthermore it is recommended the wider spacing to obtain higher thrust under the present experimental conditions.

  • PDF

An Experimental Study on the Heat Transfer Characteristics of Corrugated Impinging Jets (파형 충돌분류의 열전달 특성에 관한 실험적 연구)

  • Kim, Ye Yong;Kim, Kui Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.320-329
    • /
    • 1999
  • An experimental study has been performed to investigate the heat transfer characteristics of impinging jets with corrugated nozzle and wake generation plate. Three different shapes of corrugated nozzle and five different shapes of wake generation plate were tested to improve the heat transfer characteristics of impinging jet. Heat transfer coefficients were obtained by using transient method based on the liquid crystal thermography. The effects of corrugated nozzle and wake generation plate on the heat transfer characteristics of impinging jets were discussed in detail. The results showed that both the corrugated nozzle and the wake generation plate improved the heat transfer characteristics of impinging jet. Especially, heat transfer coefficients around stagnation region of impinging jets were highly increased.