• Title/Summary/Keyword: Impermeable area

Search Result 82, Processing Time 0.021 seconds

Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types (도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법)

  • Kim, Youngran;Hwang, Seonghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

Reduced Loads Characteristics Comparison Between Permeable Pavement and Non-point Pollutants Treatment Facility (투수성 포장재와 비점오염저감시설의 삭감부하량 특징 비교)

  • Gil, Kyung-Ik;Jeon, Hye-Sun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.193-198
    • /
    • 2011
  • This study aimed to provide basic data for permeable pavement application upon design and installation stages by analyzing the effect of permeable pavement used on the facility area rather than using non-point pollutants treatment facility upon development business in accordance with recent trend. To perform this study, the area of development target was separately applied as impermeable and permeable developments so as to compare and analyze the economics of cut pollution load and installation construction cost. Consequently, the processing amount and cut load of non-point pollutant sources are influenced much by permeable and impermeable developments, and it was turned out to be better to develop target river area as permeable area rather than installing non-point pollutants treatment facility of equipment type or natural type upon development to yield smaller discharge load. If we can prepare a countermeasure regulating impermeable area ratio to certain level to manage non-point pollutants upon development based on this result, we can minimize the source of pollution caused by the development.

An Analysis on the Interrelationship between Land-use Characteristics and Damages caused by Natural Hazards (토지이용특성과 자연재해 피해액의 상관성 분석)

  • Shim, Jae-Heon;Kim, Ja-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4319-4325
    • /
    • 2012
  • This study examines the effect of diverse land-use characteristics on the total sum of damages caused by natural hazards. The empirical results show that impermeable layer area, industrial land area, bare land area, stream area, and so on have a positive influence on damages, and that the area of levee has a strongly negative relationship with them. Therefore, this study strives to propose some efficient natural hazard mitigation ways in terms of land-use planning, based on our empirical findings.

국가지하수 관측망의 양수시험 자료 해석을 통한 대수층 특성 분석

  • 전선금;구민호;김용제;강인옥
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.487-491
    • /
    • 2004
  • For tile hydrogeological data of the National Groundwater Monitoring Wells(NGMW), a statistical analysis is made to reveal aquifer characteristics of the country. Results of the pumping and recovery test are classified into 4~5 types by the pattern of drawdown and residual drawdown curves. The analysis of aquifer characteristics shows that the hydraulic conductivity of alluvial aquifers is greater than that of fractured-rock aquifers. The hydraulic conductivity of alluvial aquifers slightly increases as the distance to the discharge area decreases. 77.5% of the NGMWs, where the distance to the discharge area is more than 100m, shows the constant head boundary. This result suggests that the fractured and the alluvial aquifers are fairly interconnected, and water can be supplied from one aquifer to tile other where pumping tests are performed. It is analyzed that the wells showing the impermeable boundary are influenced by small scale of aquifers, poor aquifer transmissivities, and impermeable layers.

  • PDF

Characteristic Analysis of Dredging and Sedimentation Debris Control Facilities in Inje, Gangwon (강원 인제지역 토석류 사방시설의 준설 및 퇴적 특성)

  • Park, Byungsoo;Jun, Sanghyun;Um, Jaekyung;Cho, Kwangjun;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2013
  • 5 each permeable and impermeable debris dams were selected to analyze the characteristics of dredging and sedimentation according to facility type in Inje, Gangwon. Field tests for the ground water table and sedimentation characteristics of the selected dams were performed. Furthermore, data of the dredging amount, storage capacity, and drainage area were analyzed for the 51 more debris control facilities. From the results of field tests, it was found that the storage capacity of impermeable debris dam could be not enough when the large debris flow is produced since sediments are accumulated even if large debris flow was not occurred. Drainage can be a problem since the ground water table of impermeable debris dam was reached to the surface of ground. However, it was found that the ground saturation should not occur at heavy rain since ground water table of permeable debris dam was located in lower part of buttress. Furthermore, from the analysis results of relation among the dredging amount, basin area, and capacity of debris control facility, it was found that size of debris control facility was not reflected by the basin area. Effective planning and construction should be accomplished for the future since the real sedimentation amount was not significant even though large debris dams were constructed.

Variation Profiles of Temperature by Green Area of Apartments in Gangnam, Seoul (서울 강남지역 아파트단지의 녹지면적에 따른 온도변화 모형)

  • 홍석환;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.1
    • /
    • pp.53-60
    • /
    • 2004
  • This study was carried out to investigate the effect of green area in apartment complexes to variation of temperature. The inside temperature of each site was estimated by analyzing Landsat ETM+ image data. The factors on variation of temperature were landcover type, building density, and Normalised Difference Vegetation Index(NDVI). The results of correlation between inside temperature of apartment complex and land cover type showed that the green area ratio had negative(-) correlation and impermeable pavement ratio had positive(+) correlation. Building-to-land ratio was not significant with inside temperature. A coefficient of correlation between the temperature value and the value of permeable pavement ratio added up green area ratio was higher than a coefficient of correlation between the temperature value and the value of permeable pavement ratio added up impermeable pavement ratio. Thus we may define that permeable pavement area decrease urban temperature with green area in apartment complex. Floor area ratio had no significant correlation with inside temperature. Inside temperature was decreased as the NDVI was increased. To establish the temperature distribution model in a development apartment complex, As the result of regression analysis between inside temperature as dependent variable and permeable pave ratio+green area ratio, green area ratio, building-to-land ratio and NDIT as independent variables, only permeable pavement ratio added up green area ratio of the independent variables was accepted fur regression equation in both two seasons and adjusted coefficient of determination was 41.4 on September, 2000 and 40.4 on June,2001.

Biotop Mapping Using High-Resolution Satellite Remote Sensing Data, GIS and GPS

  • Shin Dong-Hoon;Lee Kyoo-Seock
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.5
    • /
    • pp.329-335
    • /
    • 2004
  • Biotop map can be utilized for nature conservation and assessment of environmental impact for human activities in urban area. High resolution satellite images such as IKONOS and KOMPSAT1-EOC were interpreted to classify land use, hydrology, impermeable pavement ratio and vegetation for biotop mapping. Wildlife habitat map and detailed vegetation map obtained from former study results were used as ground truth data. Vegetation was investigated directly for the area where the detailed vegetation map is not available. All these maps were combined and the boundaries were delineated to produce the biotop map. Within the boundary, the characteristics of each polygon were identified, and named. This study investigates the possibility of biotop mapping using high resolution satellite remote sensing data together with field data with the goal of contributing to nature conservation in urban area.

Analysis of Radiation Fusion Shielding Performance of Ytterbium Oxide, a Radiation Impermeable Substance (방사선 불투과성 물질 산화이테르븀(Ytterbium oxide)의 방사선 융합 차폐성능 분석)

  • Kim, Seon-Chil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.4
    • /
    • pp.87-94
    • /
    • 2021
  • While the shielding substances of radiation shields in medical institutions are beginning to be replaced by environmentally friendly materials, radiation protection according to the shielding properties of environmentally friendly substances is becoming an important factor rather than the existing lead shielding properties. Tungsten and barium sulfate are representative shielding materials similar to lead, and are made in sheets or fiber form with eco-friendly materials. Ytterbium is an impermeable material used as a fluorine compound in the dental radiation field. This study aims to evaluate the shielding performance in the x-ray shielding area by comparing the shielding properties of ytterbium by energy band and that of existing eco-friendly materials. When three types of shielding sheets were fabricated and tested under the same process conditions, the shielding performance of the medical radiation area was about 5 % difference from tungsten. Furthermore, shielding performance was superior to barium sulfate. In the cross-sectional structure of the shielding sheet, there was a disadvantage that the arrangement of particles was not uniform. Ytterbium oxide showed sufficient potential as a medical radiation shielding material, and it is thought that it can improve the shielding performance by controlling the particle arrangement structure and particle size.

Ventilation Efficiency of Clothing through Openings under an Isothermal Condition (등온 환경하에서 개구부를 통한 의복의 환기 효율)

  • 추미선
    • The Research Journal of the Costume Culture
    • /
    • v.6 no.4
    • /
    • pp.229-237
    • /
    • 1998
  • The ventilation efficiency of clothing was investigated by a trace gas method using a manikin wearing an impermeable overall under an isothermal condition, where the ventilation occurred only through the openings by diffusion. The ventilation patterns were different for each part of the body. The ventilation efficiency in the clothing microenvironment of the arm and the leg greatly depended on the distance from each opening when the wrist- or the ankle-opening was opened. When both side of wrist- or ankle-openings were opened to provide the opening area double respectively, the ventilation efficiency did not correspondingly increase twice, as compared one side opened. Even though it as certainly affected by the opening area, the ventilation efficiency was more significantly influenced by the position of openings.

  • PDF

산악지역 내 LNAPL 오염의 개념모델 정립을 위한 사례연구

  • Kang, U-Jae;Gong, Jun;Jeon, Jin-Oh;Lee, Sang-Bong;Hwang, Jong-Sik;Bae, U-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.85-88
    • /
    • 2001
  • Since mountainous area has access restrictions for field work, assessors need to establish a conceptual model of the contamination prior to the field investigation. In this study we established a conceptual model of the contamination based on site inspection and geological survey, followed by the field investigation for the petroleum spill site. In the conceptual model, we estimated that tile contamination should have spread by groundwater and topographical characteristics within the top soil layer. The spread of contamination through rock was not considered in the conceptual model due to impermeable characteristics of metasyenite. The contaminated environmental media of the petroleum spill site include soil and groundwater. According to the analysis result of the contamination, the volume of contaminated soil is estimated approximately 4, 150 cubic meters (7, 055 ton) with most contaminants existing along the groundwater flow within top soil layer.

  • PDF