• Title/Summary/Keyword: Impermeable Layer

Search Result 59, Processing Time 0.033 seconds

Classification of Hydrologic Soil Groups of Korean Soils Using Estimated Saturated Hydraulic Conductivity and Depth of Impermeable Layer (포화 수리전도도와 불투수층 깊이에 따른 우리나라 토양의 수문학적 토양군 분류)

  • Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Seo, Mijin;Zhang, Yongseon;Seo, Youngho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.25-30
    • /
    • 2017
  • Hydrologic soil group is one of the important factors to determine runoff potential and curve number. This study was conducted to classify the hydrologic soil groups of Korean soils by considering saturated hydraulic conductivity and depth of impermeable layer. Saturated hydraulic conductivity of Korean soils was estimated by pedotransfer functions developed in the previous studies. Most of paddy soils were classified as D type due to shallow impermeable layer and low saturated hydraulic conductivity in B soil horizon. For upland and forest, soils classified to A and D types increased compared with former classification method because underestimated permeabilities and overestimated drainages were corrected and rock horizon in shallow depth was regarded as impermeable layer. Soils in mountainous land showed the highest distribution in A type, followed by D type. More than 60 % of soils in mountain foot-slope, fan and valley, alluvial plains, and fluvio-marine deposits were classified to D type because of land use such as paddy and upland.

Effect of a Frontal Impermeable Layer on the Excess Slurry Pressure during the Shield Tunnelling (전방 차수층이 쉴드터널 초과 이수압에 미치는 영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1199-1213
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, but low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. As results, larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0~1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

  • PDF

Evaluation of Optimal Performance of Hydraulic Barriers in Offshore Landfill using Seepage-Advection-Dispersion Analysis under Steady State Flow (정상류하 침투·이류 분산 해석을 이용한 폐기물 해상최종처리장 차수시스템의 최적 성능 평가)

  • Hwang, Woong-Ki;Oh, Myoung-Hak;Kim, Tae-Hyung;Kim, Hyang Eun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.2
    • /
    • pp.61-68
    • /
    • 2018
  • This study was conducted to propose the optimum minimum requirement of cutoff system composed of the impermeable soil layer and vertical barrier in offshore landfill for prevention pollution leakage by seepage, advection, and dispersion numerical analyses under steady state. According to the study results, the minimum requirement of impermeable soil layer is below $1{\times}10^{-6}cm/s$ of hydraulic conductivity with more than 500 cm thickness or a system with equivalent cutoff effect. The minimum requirement of vertical barrier is below $1{\times}10^{-6}cm/s$ of hydraulic conductivity with more than 50 cm thickness or a system with equivalent cutoff effect. In addition, the vertical barrier should be embedded enough to seal securely with the impermeable soil layer for working cutoff effect.

INERTIAL EFFECT ON CONVECTIVE FLOW IN A PASSIVE MUSHY LAYER

  • Bhatta, Dambaru;Riahi, Daniel N.;Muddamallappa, Mallikarjunaiah S.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.499-510
    • /
    • 2012
  • Here we consider the inertial effect in a horizontal mushy layer during solidification of a binary alloy. Using perturbation technique, we obtain two systems, one of zero order and the other of first order. We consider a mushy layer with an impermeable mush-liquid interface and of constant permeability. The analysis reveals that the effect of inertial parameter is stabilizing in the sense that the critical Rayleigh number at the onset of motion increases by the inertial effect.

Effect of a frontal impermeable layer on the excess slurry pressure during the shield tunnelling in the saturated sand (포화 사질토에서 전방 차수층이 쉴드터널 초과 이수압에 미치는영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.4
    • /
    • pp.347-370
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, when the slurry pressure would be properly adjusted. Low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. In tests slurry pressure was increased until the slurry flowed out of the ground surface or the ground fails. Location and dimension of the impermeable layer were varied. As results, the maximum and the excess slurry pressure in sandy ground were linearly proportional to the cover depth. Larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0 ~ 1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5 ~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

Urban Renewal with Green on Impermeable Surface (인공지반의 녹화에 의한 도시의 재생)

  • Hajime, Koshimizu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.4
    • /
    • pp.17-31
    • /
    • 2004
  • How far of natural regeneration of the city and improvement on the urban environment will be possible in the replanting on the impermeable surface? The replanting of what kind of form will be obtained in order to realize it? The regeneration of the nature is possible, if it can be realized at the thin soil layer in which the result of being equivalent to the natural soil function. Using the light artificial soil with the water retentiveness, it is possible that green on the artificial ground reinforces the green skeleton of the city. The green of artificial ground improves the thermal ambience of the city and demonstrates stormwater runoff depression effect. It is necessary to built the landscape which continues with the surrounding green. Ecologically stabilizing green has the high amenity. The development of replanting technology of the artificial ground which fosters the city culture is desired.

An Analysis on the Interrelationship between Land-use Characteristics and Damages caused by Natural Hazards (토지이용특성과 자연재해 피해액의 상관성 분석)

  • Shim, Jae-Heon;Kim, Ja-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4319-4325
    • /
    • 2012
  • This study examines the effect of diverse land-use characteristics on the total sum of damages caused by natural hazards. The empirical results show that impermeable layer area, industrial land area, bare land area, stream area, and so on have a positive influence on damages, and that the area of levee has a strongly negative relationship with them. Therefore, this study strives to propose some efficient natural hazard mitigation ways in terms of land-use planning, based on our empirical findings.

Edge Crack Behavior in a Three Layered Piezoelectric Composite Under Anti-Plane Impact Loads (면외 충격하중을 받는 3층 압전 복합재료내의 가장자리 균열거동)

  • Kwon, Soon-Man;Son, Myung-Son;Lee, Kang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2172-2179
    • /
    • 2002
  • In this paper, we examine the dynamic electromechanical behavior of an edge crack in a piezoelectric ceramic layer bonded between two elastic layers under the combined anti-plane mechanical shear and in-plane electric transient loadings. We adopted both the permeable and impermeable crack boundary conditions. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the dynamic energy release rate are presented to show the dependences upon the geometry, material combination, electromechanical coupling coefficient and electric field.

Transient response of a piezoelectric layer with a penny-shaped crack under electromechanical impacts

  • Feng, Wenjie;Li, Yansong;Ren, DeLiang
    • Structural Engineering and Mechanics
    • /
    • v.23 no.2
    • /
    • pp.163-175
    • /
    • 2006
  • In this paper, the dynamic response of a piezoelectric layer with a penny-shaped crack is investigated. The piezoelectric layer is subjected to an axisymmetrical action of both mechanical and electrical impacts. Two kinds of crack surface conditions, i.e., electrically impermeable and electrically permeable, are adopted. Based upon integral transform technique, the crack boundary value problem is reduced to a system of Fredholm integral equations in the Laplace transform domain. By making use of numerical Laplace inversion the time-dependent dynamic stress and electric displacement intensity factors are obtained, and the dynamic energy release rate is further derived. Numerical results are plotted to show the effects of both the piezoelectric layer thickness and the electrical impact loadings on the dynamic fracture behaviors of the crack tips.

A Strady-State One-Dimensional Analysis of an Oxygen Electrode in Stationary and Flowing Liquid (정체 및 유동액체에서 산소전극의 안정상태 일차원적 해석)

  • 김태진
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.150-156
    • /
    • 1989
  • The chaacterisitics of a commercial membrance-coverd electrode in air-saturated saline solution were investigated in terms of a steadystate one-dimensional model. The electrode system miiersed in an aqueous medium consists of three layers: an external concentration boundary layer, a membrance, and an inner electrolyte layer. The membrance can be permeabld to the water and impermeable to the ionic species. In stationary midium, the water migrates from the external medium to the inner electrolyte layer until a thermodynamic equilibrium is reached. In a following midium, however, there is a reverse direction of water movement due to the hyrodynamic pressure differential until both thickness of the electrolyte layer and the membrance are equal.

  • PDF