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INERTIAL EFFECT ON CONVECTIVE FLOW IN A PASSIVE

MUSHY LAYER

DAMBARU BHATTA∗, DANIEL N. RIAHI AND MALLIKARJUNAIAH S.

MUDDAMALLAPPA

Abstract. Here we consider the inertial effect in a horizontal mushy layer
during solidification of a binary alloy. Using perturbation technique, we
obtain two systems, one of zero order and the other of first order. We

consider a mushy layer with an impermeable mush-liquid interface and
of constant permeability. The analysis reveals that the effect of inertial
parameter is stabilizing in the sense that the critical Rayleigh number at

the onset of motion increases by the inertial effect.
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1. Introduction

Convection plays a very important role during the solidification process of
binary alloys. The final form of the solidified alloy contains impurities known
as freckles. When a binary alloy is cooled from below, due to the temperature
difference at the bottom, the solidification front becomes morphologically unsta-
ble. The result is a mixture of solid-liquid contents better known as mushy layer.
This layer is sandwiched between a solid layer at the bottom and a liquid layer
at the top. The convective flow with in the mushy layer influences the formation
of thread like structures in the final form of the solidified alloy. Therefore, it
is of great importance to have fundamental understanding of the freckle forma-
tion and means of controlling it. A fairly large number of, theoretical as well
as experimental, studies have been devoted to predicting the chimney formation
during the solidification process. This kind of heat transfer can be seen in solid-
ification of binary alloys. Many previous studies [1-7] have examined in detail
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about the mechanism of freckle formation during the solidification of multi com-
ponent alloys. Fowler [1] developed mathematical analysis of freckle formation
to predict the criterion for freckling. This prediction is equivalent to the classical
Rayleigh number condition for convective instability. Vives and Perry [2] carried
out an experimental investigation of solidification of tin and aluminium alloys
under the influence of externally imposed magnetic field. They reported that
the stationary magnetic field decreases the superheat and increases the rate of
solidification. Tait et. al. [3] observed the hexagonal pattern of convection just
when the system becomes unstable during their experimental work.

Worster [4, 5] applied linear stability analysis for the two layer model and con-
cluded that the mushy layer mode is responsible for the development of chimneys.
Amberg and Homsy [6] studied the simplified mushy layer model with constant
permeability. They carried out a weakly nonlinear analysis of simplified mushy
layer model that was proposed by Worster [5]. A near eutectic approximation
was applied and the limit of large far-field temperature was considered. Such
asymptotic limits allowed them to examine the dynamics of mushy layer. A
weakly nonlinear analysis of simplified mushy layer model that was proposed in
[6] was carried out by Anderson and Worster [7]. A near eutectic approximation
was applied and the limit of large far-field temperature was considered. Such
asymptotic limits allowed them to examine the dynamics of mushy layer. They
also considered the limit of large Stefan number, which enabled them to reach
a domain for the existence of the oscillatory mode of convection. Chen [8] car-
ried out laboratory experiments on water-ammonium chloride solution. Riahi
[9] studied asymptotically the nonlinear compositional convection in chimneys
under the externally imposed magnetic field in vertical direction. It was found
that for sufficiently large values of Chandrasekhar number, convection and vol-
ume flux in the chimneys decrease with increasing Chandrasekhar number.

Drazin and Reid [10] have presented varous studies done by many researchers.
They presented methods and results of thermal convection, rotating and curved
flows and parallel shear fows. Development of asymptotic theory of Orr- Som-
merfeld equation, applications of linear stability theory and nonlinear thoery of
hydrodynamic stability have been presented. In another recent development by
Okhuysen and Riahi [11], a weakly nonlinear analysis of buoyant convection in
two-layer model was considered. They predicted subcritical down-hexagonal pat-
tern for the case of reactive mushy layer. Authors investigated linear marginal
stabilities for magneto-convection cases [12, 13]. However, extensive investiga-
tions of the inertial effects on solidification process have not been undertaken
until recently. The objective of this paper is to model the convection in the
mushy layer model, incorporating the inertial effects. By using both analytical
and numerical techniques the governing partial differential equations are solved
for the primary disturbance variables. Our analysis revealed that the inertial
effects are stabilizing in the sense that the critical Rayleigh number increases as
inertial parameter increases.
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2. Governing system for the mushy layer

We consider a system governing the mushy layer of thickness d which is cooled
from below as shown in the figure 1.
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Figure 1. Geometry

We use the model proposed by Worster [4]. This system is given by

µ

Π

−→
U +

1

1− Φ

{
∂

∂t
+

−→
U .∇
1− Φ

}
−→
U = −∇p− (ρ− ρ0) g

−→
k

∇.
−→
U = 0 (1)

∂T

∂t
+

−→
U .∇T = κ∇2T +

lh
γ

∂Φ

∂t

χ
∂C

∂t
+
−→
U .∇C = (C − Cs)

∂Φ

∂t
.

Here the equations represent conservation of momentum, conservation of
mass, conservation of heat and conservation of solute respectively. Here t, T, κ,
γ, lh, represent time, temperature, thermal diffusivity of the liquid, specific heat

of the liquid, latent heat per unit mass respectively. Here
−→
U = Ui⃗+V j⃗+Wk⃗ is

the liquid flux where U, V are used to denote horizontal components, W denotes

the vertical component of
−→
U and i⃗, j⃗, k⃗ are the unit vectors along x, y, z direc-

tions. Also Φ stands for the local solid volume fraction, i.e., Φ = 1− χ where χ
is the local liquid volume fraction. C is the composition of the liquid and Cs is
the composition of the solid phase. Hereµ is used for dynamic viscosity of the
liquid, p represents the dynamic pressure, ρ is the density of the liquid and g
denotes the acceleration due to gravity. Permeability Π = Π(χ) is a function of
the local liquid volume fraction, χ.
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The boundary conditions are

T = Te, W = 0 at z = 0

T = T0, Φ = W = 0 at z = d .

Here T0 denotes the temperature at the mush-liquid interface (at z = d), and
Te and Ce represent eutectic temperature and eutectic concentration (at the
solid-mush interface, z = 0) respectively.

2.1. Nondimensionalization. We nondimensionalize the system in a frame
moving with the solidification front at constant speed V0 and use the following

scalings: velocity scale is V0, i.e.,
−→
U =

−→
U
V0
, length scale is κ

V0
, time scale is κ

V 2
0
,

pressure scale is κµ
Π0

, Θ = T−T0

△T , K = Π0

Π where ∆T = T0−Te,∆C = C0−Ce and

Π0is a reference Π. The nondimensional constants appearing in the derivation
are Rayleigh number, R = βgΠ0∆C

V0µ
, Stefan number, S = lh

γ∆T , concentration

ratio, C = Cs−C0

∆C and inertial parameter, I = Π0

µ .

Nondimensional system can be expressed as

K−→U +∇P +RΘ
−→
k +

I
1− Φ

{
∂

∂t
− ∂

∂z
+

−→U .∇
1− Φ

}
−→U =

−→
0

∇.
−→U = 0 (2)(

∂

∂t
− ∂

∂z

)
[Θ− SΦ] +

−→
U .∇Θ = ∇2Θ(

∂

∂t
− ∂

∂z

)
[(1− Φ)Θ + CΦ] +

−→
U .∇Θ = 0

with boundary conditions:

Θ = −1, W = 0 at z = 0

Θ = Φ = W = 0 at z = δ

where W denotes the vertical component of
−→
U . For this study, we take perme-

ability as constant, i.e., K = 1.

3. Solution Procedure

Assuming solutions of the form

Θ(x, y, z, t) = θb(z) + ϵθ (x, y, z, t)

Φ(x, y, z, t) = ϕb(z) + ϵϕ (x, y, z, t)
−→
U (x, y, z, t) =

−→
0 + ϵ−→u (x, y, z, t) (3)

P(x, y, z, t) = pb(z) + ϵp (x, y, z, t)
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where θb, ϕb, pb are solutions to the steady basic state system (system with no
flow) and θ, ϕ, −→u , p are perturbation solutions. ϵ is the perturbation parame-
ter.

3.1. Basic State Solutions. Using (3) in (2) and setting ϵ = 0, we obtain
steady basic state system as

d2θb
dz2

+
dθb
dz

− S dϕb

dz
= 0 (4)

(1− ϕb)
dθb
dz

+ (C − θb)
dϕb

dz
= 0 (5)

dpb
dz

+Rθb = 0 (6)

with boundary conditions:

θb = −1 at z = 0

θb = ϕb = 0 at z = δ.

Solutions θb and ϕb are, respectively, given by (as presented by Worster [5])

z =
r1 − C
r1 − r2

ln

[
1 + r1
r1 − θb

]
+

C − r2
r1 − r2

ln

[
1 + r2
r2 − θb

]
(7)

and

ϕb =
θb

θb − C
(8)

where r1, r2 are given by

r1 =
C + S + θ∞ +

√
(C + S + θ∞)

2 − 4Cθ∞
2

r2 =
C + S + θ∞ −

√
(C + S + θ∞)

2 − 4Cθ∞
2

.

and θ∞ is the non-dimensional temperature far away from mush/liquid interface.
Thickness of the layer can be determined as

δ =
r1 − C
r1 − β

ln

[
1 + r1
r1

]
+

C − r2
r1 − r2

ln

[
1 + r2
r2

]
.

3.2. Linear Perturbed System. After linearization, the perturbed system is
given by

−→u +∇p+Rθk̂ +
I

1− ϕb

{
∂

∂t
− ∂

∂z

}
−→u =

−→
0 (9)

∇.−→u = 0 (10)
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∂

∂t
− ∂

∂z
−∇2

)
θ − S

(
∂

∂t
− ∂

∂z

)
ϕ+ w

dθb
dz

= 0 (11)(
∂

∂t
− ∂

∂z

)
{(1− ϕb) θ + (C − θb)ϕ}+ w

dθb
dz

= 0 (12)

with boundary conditions

θ = w = 0 at z = 0

θ = ϕ = w = 0 at z = δ.

where w is the vertical component of −→u , i.e., −→u = (u, v, w).

3.3. Elimination of the Pressure term in Perturbed System. Now we
eliminate the term involving p in the equation (9) by considering the third com-
ponent of the double curl of each term in that equation.

Third component of ∇×∇×−→u is given by

uxz + vyz − wxx − wyy

= [ux + vy]z − wxx − wyy

= −wzz − wxx − wyy as ux + vy + wz = 0

= −∇2w

Here ∇2 denotes 3-D Laplacian. Similarly, for the third component of ∇×∇×
(Rθk̂), we have

−R [θxx + θyy] = −R(∆2θ)

where ∆2 is used to denote 2-D Laplacian.

Third component of ∇×∇×
[

I
1−ϕb

{
∂
∂t −

∂
∂z

}−→u ]
is

I

[{
(∂t − ∂z)u

1− ϕb

}
xz

+

{
(∂t − ∂z) v

1− ϕb

}
yz

−
{
(∂t − ∂z)w

1− ϕb

}
xx

−
{
(∂t − ∂z)w

1− ϕb

}
yy

]

= I
[{

1

1− ϕb
(∂t − ∂z) (ux + vy)

}
z

− 1

1− ϕb
(∂t − ∂z) {wxx + wyy}

]
= −I

[{
1

1− ϕb
(∂t − ∂z)wz

}
z

+
1

1− ϕb
(∂t − ∂z) {wxx + wyy}

]
= − I

1− ϕb

[
(∂t − ∂z)

(
∇2w

)
+

ϕ′
b

1− ϕb
(∂t − ∂z)wz

]
Thus after elimination of the pressure term, the perturbed system can be

expressed as

∇2w +R (∆2θ) +
I

1− ϕb

{(
∂

∂t
− ∂

∂z

)
∇2w

+
ϕ′
b

1− ϕb

(
∂

∂t
− ∂

∂z

)
∂w

∂z

}
= 0 (13)
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∇2 +

∂

∂z
− ∂

∂t

)
θ − S

(
∂

∂z
− ∂

∂t

)
ϕ− θ′bw = 0 (14)(

∂

∂z
− ∂

∂t

)
[(θb − C)ϕ− (1− ϕb) θ] + θ′bw = 0 (15)

Assuming I to be small and using the normal mode approach [2, 17] for two
dimensional case, we can write

w(x, z, I, t) = Re
[
w0(z) e

iαx+σt
]
= Re

[
{w00(z) + Iw01(z)} eiαx+σt

]
θ(x, z, I, t) = Re

[
θ0(z) e

iαx+σt
]
= Re

[
{θ00(z) + Iθ01(z)} eiαx+σt

]
ϕ(x, z, I, t) = Re

[
ϕ0(z) e

iαx+σt
]
= Re

[
{ϕ00(z) + Iϕ01(z)} eiαx+σt

]
and R = R00 + IR01 to obtain two systems: one of order I0 and the other of
order I1.

System of order I0 is given by

(
D2 − α2

)
w00 − α2R00θ00 = 0 (16)(

D2 +D − α2 − σ
)
θ00 − S (D − σ)ϕ00 − θ′bw00 = 0 (17)

(D − σ) [(θb − C)ϕ00 − (1− ϕb) θ00] + θ′bw00 = 0 (18)

where D = ∂z .This system can be written as

Lq00 = 0 (19)

with

L =

 D2 − α2 −α2R00 0
−θ′b D2 +D − α2 − σ −S (D − σ)
θ′b − (1− ϕb) (D − σ) + ϕ′

b (θb − C) (D − σ) + θ′b

 (20)

and q00 =
[
w00, θ00, ϕ00

]T
. Here T is used to denote the transpose.

System of order I1 can be written as(
D2 − α2

)
w01 − α2R00θ01 = α2R01θ00 +

ϕ′
b

(1− ϕb)2
D (D − σ)w00

+
1

1− ϕb

(
D2 − α2

)
(D − σ)w00 (21)(

D2 +D − α2 − σ
)
θ01 − S (D − σ)ϕ01 − θ′bw01 = 0 (22)

(D − σ) [(θb − C)ϕ01 − (1− ϕb) θ01] + θ′bw01 = 0 (23)

which can be written as

Lq01 = T00 (24)

with
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T00 =

 α2R1θ0 +
1

1−ϕb

{
D2 − α2 +

ϕ′
b

1−ϕb
D
}
(D − σ)w0

0
0

 (25)

and q01 = [w01, θ01, ϕ01]
T
. We want to obtain the numerical solutions of the

systems given by (19) and (24). To solve the system given by (24), we need to
compute R01 first, so we introduce adjoint system La for the operator L.

3.4. Adjoint System. Now we define the linear adjoint operator La of the
linear operator L as

< Lq00, qa > = < q00, Laqa > (26)

where L is given by (20), qa =
[
wa, θa, ϕa

]T
and < f, g > =

∫ δ

0
fgdz.

To obtain the adjoint system, we multiply the equations (16), (17) and (18)
by wa, θa and ϕa respectively, and then integrate with respect to z from z = 0
to z = δ. These yield∫ δ

0

wa

{(
D2 − α2

)
w00 − α2R00θ00

}
dz

+

∫ δ

0

θa
{(

D2 +D − α2 − σ
)
θ00 − S (D − σ)ϕ00 − θ′bw00

}
dz

+

∫ δ

0

ϕa {(D − σ) [(θb − C)ϕ00 − (1− ϕb) θ00] + θ′bw00} dz = 0 (27)

Boundary conditions for the adjoint system are

wa = θa = ϕa = 0 at z = 0

wa = θa = 0 at z = δ.

Integration by parts on (27), and use of the boundary conditions yield the
adjoint system as

{
D2 − α2

}
wa + θ′b (ϕa − θa) = 0{

D2 −D − α2 − σ
}
θa − α2R00wa + (1− ϕb) (D + σ)ϕa = 0 (28)

S (D + σ) θa + (C − θb) (D + σ)ϕa = 0

and, in turn, we can write adjoint operator La as

La =

 D2 − α2 −θ′b θ′b
−α2R00 D2 −D − α2 − σ (1− ϕb) (D + σ)

0 S (D + σ) (C − θb) (D + σ)

 (29)
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3.4.1. Computation of R01. To obtain the dependent variables w01, θ01 and
ϕ01 appearing on for the order I1, we need to find R01 once we obtain the
solutions w00, θ00 and ϕ00 for the order I0. We multiply the equations (21),
(22) and (23) by wa, θa and ϕa respectively, and then integrate with respect to
z from z = 0 to z = δ to obtain

∫ δ

0

wa

{(
D2 − α2

)
w01 − α2R00θ01

}
dz

+

∫ δ

0

θa
{(

D2 +D − α2 − σ
)
θ01 − S (D − σ)ϕ01 − θ′bw01

}
dz

+

∫ δ

0

ϕa {(D − σ) [(θb − C)ϕ01 − (1− ϕb) θ01] + θ′bw01} dz

=

∫ δ

0

wa

{
α2R01θ00 +

ϕ′
b

(1− ϕb)2
D (D − σ)w00

}
dz

+

∫ δ

0

wa

{
1

1− ϕb
(D − σ)

(
D2 − α2

)
w00

}
dz

Successive integration by parts and use of boundary conditions yield

∫ δ

0

w01

{(
D2 − α2

)
wa − θ′bθa + θ′bϕa

}
dz

+

∫ δ

0

θ01
{
−α2R00θa +

(
D2 −D − α2 − σ

)
θa + (1− ϕb) (D + σ)ϕa

}
dz

+

∫ δ

0

ϕ01 {S(D + σ)θa + (C − θb) (D + σ)ϕa} dz

=

∫ δ

0

wa

{
α2R01θ00 +

ϕ′
b

(1− ϕb)2
D (D − σ)w00

}
dz

+

∫ δ

0

wa

{
1

1− ϕb
(D − σ)

(
D2 − α2

)
w00

}
dz

Thus, we obtain an expression for R1 as

R01 =

∫ δ

0
wa

1−ϕb

{
ϕ′
b

1−ϕb
D (D − σ)w00 + (D − σ)

(
D2 − α2

)
w00

}
dz

−α2
∫ δ

0
waθ00dz

(30)

4. Numerical Results

For marginal stability results, we set σ = 0. For our computations, we chose
the parameters which are used by experimentalists [8]. These parameters are 3.2
for Stefan number, 9.0 for concentration ratio, 0.1 for far-field temperature. First
we obtain the basic state solutions by performing computation on the equations
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(7) and (8). Once we obtain the basic state solutions, then to determine stabil-
ity results, we solve the linear stability problem (order ϵ0) numerically using the
fourth-order Runge-Kutta in combination of shooting method [14]. In order to
solve the equations (16), (17), and (18), we first convert these equations into a
system of five first-order ordinary differential equations. The linear problem of
order I0 yields 1.71 and 18.5220 as critical wavenumber, α and critical Rayleigh
number, R00. After obtaining the critical wavenumber and critical Rayleigh
number, we solve the adjoint system given by (28) numerically so that the com-
puted value of R01 can be found from the equation (30). Then we obtain the
marginal stability curves (where R = R00 + IR01 ) for various values of the
inertial parameter, I. Figure 2 presents the graphs of marginal stability curves
for I = 0.0, 0.001, 0.005 and 0.01. It can be seen from the figure 2 that presence
of the inertial effect is stabilizing in the sense that the critical Rayleigh number
increases with I.
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Figure 2. Marginal Stability Curves

We solve the system of order I1 given by (21), (22) and (23) numerically. This
yields the solutions w01, θ01 and ϕ01. Figures 3, 4 and 5 present the dependent
variables w0 = w00 + Iw01, θ0 = θ00 + Iθ01 and ϕ0 = ϕ00 + Iϕ01 for different
values of I. As values of I increases, the vertcal velocity component decreases,
thus I has stabilizing effect. The results presented in the figure 3 indicate that
presence of inertal term reduces the non-uniformity of the vertical velocity for
the neutral stability flow.

The results shown in the figure 4 indicate that the inertial effect increases the
amount of non-uniformity in the temperature of the fluid in the mushy layer.

The results presented in the figure 5 reinforcethose [resented in the figure 4
and indicate more non-uniformity o=in the sloid fraction due to inertial effect.

5. Conclusion

We investigated the effect of inertial parameter in a horizontal mushy layer
arising in binary alloy solidification problems. Using perturbation technique,
we obtained two systems: one of order I0 and other of order I1. Then we
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obtained the system which is adjoint to the system of order I0. For the case we
investigated, we conclude from our numerical results that the inertial parameter
is stabilizing in the sense that the critical Rayleigh number increases by the
inertial effect. In addition, presence of the inertial effect tends to increase the
amount of non-uniformity in the tempertaure and the solid fraction but decreases
such non-uniformity in the vertical velocity in the mushy zone.
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