• 제목/요약/키워드: Impeller discharge flow

검색결과 32건 처리시간 0.024초

일체형원자로 SMART 냉각재 순환펌프의 전산성능예측 (Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART)

  • 김민환;이재선;박진석;김종인;김긍구
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.

CFD를 이용한 해수냉각펌프의 내부유동 분석 (Internal Flow Analysis of Seawater Cooling Pump using CFD)

  • ;양창조;김부기;김준호
    • 해양환경안전학회지
    • /
    • 제23권1호
    • /
    • pp.104-111
    • /
    • 2017
  • 본 연구는 원심펌프 내부 유동장 특성에 대한 시뮬레이션 및 시각화에 중점을 둔다. 3D 수치해석은 Reynolds Average Navier-stock 코드를 k-${\varepsilon}$ 표준 2차방정식 난류 모델로 처리하여 수행하였다. 시뮬레이션은 흡입측, 임펠러, 토출측 영역에서 조도로 인한 마찰 손실과 임펠러 웨어링에서 체적 손실을 포함한다. 해석과 실험사이의 성능곡선 비교결과 최대 5 %의 작은 차이를 보이며 동일한 추세를 나타냈다. 최고 효율점에서 속도 벡터는 고르게 나타났지만 비 설계점에서는 현저한 변화가 나타났고, 텅 부근의 임펠러 유로토출부에서 강력한 재순환 영역이 나타났다. 비교적 일정한 압력분포가 텅 부근임에도 불구하고 임펠러 주위에 관찰되었다. 볼류트 내에서 기하학적으로 인해 형성된 나선형 와류가 이 영역에서 유동장이 상대적으로 난류이고 불안정하다는 것을 증명하였다.

케이싱 형상 변화가 소형 터보압축기 성능에 미치는 영향 (Effects of Casing Shape on the Performance of a Small-Size Turbo-Compressor)

  • 김동원;김윤제
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1031-1038
    • /
    • 2002
  • The effects of casing shape on the performance and interaction between the impeller and casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuer and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and three-dimensional time-averaged Wavier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around casing and pressure difference between the inlet and outlet of the compressor are peformed for the circular casing. Comparisons of these results between the experimental and numerical analyses are conducted, and reasonable agreement is obtained.

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권4호
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

공기흡입에 의한 스크류식 원심펌프의 양수불능 특성에 관한 연구 (A Study on the Break-down Characteristics of a Screw-type Centrifugal Pump due to Air Entrainment)

  • 김유택
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.58-63
    • /
    • 2003
  • The performance of turbo pump drops rapidly and it gets into break-down when the void fraction reaches above the threshold value because the impeller flow passage is choked up with air bubbles. Phenomenological understanding of break-down and pumping recovery mechanisms under air-water two-phase flow conditions are therefore important for pump designers and essential assignment for researchers. In this paper, we investigated the characteristics of break-down and pumping recovery due to entrained air occurring inside a screw-type centrifugal pump which has a wide flow passage mainly through the findings of suction and discharge pressures, rotational speed, flow rate measurements and visualization.

대형 디젤엔진 자동변속기 오일쿨러 냉각팬 성능에 관한 연구 (A Study on Performance of Cooling Fan for Auto Transmission Oil Cooler in the Large-Size Diesel Engine)

  • 이중섭;서정세;송철기;윤지훈
    • 한국유체기계학회 논문집
    • /
    • 제13권6호
    • /
    • pp.71-76
    • /
    • 2010
  • This study has investigated numerically and experimentally the flow characteristic of air-cooling fan for transmission oil cooler in the large-size diesel engine. Impellers of cooler were composed of eight normal-scale and eight small-scale blades in the zig-zag pattern. In order to increase the discharge pressure of cooling fan, turbo type of fan blade is proposed in the impeller for transmission oil cooler. The fluidic performance of cooling fan has been estimated numerically by using the commercial code and experimentally carried out with reference on AMCA Standard 210-99. As a result, it is confirmed that the numerical result for performance curve is in good agreement with experimental data.

Testing and Modification of an Axial Flow Irrigation Pump manufactured in Vietnam

  • V.M.Salokhe;Khanh, Vu-Tuan
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1996년도 International Conference on Agricultural Machinery Engineering Proceedings
    • /
    • pp.247-256
    • /
    • 1996
  • The performance of a commonly used, inclined shaft, axial flow pump manufactured in Vietnam was evaluated . The pump tested had a 37 cm diameter thrust impeller and 40 cm outlet diameter. This pump was initially evaluated to establish the base performance curves for three total static heads of 1.45 m, 1.75m and 2.15 m at a constant recommended speed of 980 rpm. In the field survey, brass sleeve , impeller and lubricating system. These parts of the pump were modified and then it was tested again at the same test conditions used for the original one. Maximum efficiency of the original pump varied from 56.11% to 53.15% , and that of the modified pump from 57.63% to 54.52% when the total static head varied from 1.45 m to 2.15m . At these total static heads, the discharge, the total head and the power input varied from 387 to 347l/s, 4.25 to 4.60m and 28.72 to 29.38kW, respectively, for the original pump and from 388 to 346l/s , 4.29 to 4.63 m and 28.23 to 28.91 kw, respectivel , for the modified pump. The efficiency of the pump after modification increased by more than 1.5% and the power input decreased by 1.7%.

  • PDF

캐비티 베인이 있는 고속 원심펌프의 축추력 제어 (Axial Thrust Control of High-speed Centrifugal Pump with Cavity Vanes)

  • 김대진;최창호;노준구;김진한
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.46-50
    • /
    • 2012
  • A high-speed centrifugal pump requires more attention to the control of its axial thrust due to the high discharge pressure than a conventional industrial pump. Vanes employed toward the rear cavity of the impeller can be an effective device to control the axial thrust of the pump. The vanes disturb circumferential flow of the cavity and it can modify the axial force acting on the impeller. In this paper, three types of vanes are installed in the high-speed centrifugal pump for liquid rocket engines and the thrust of the pump is measured with an additional thrust measurement unit. According to the results, shapes of cavity vanes have effects on the axial thrust of the pump. As the height of vanes increases, the outlet pressure of the rear floating ring seal decreases which results in a decrease of the thrust. On the other hand, head of the pump is almost same regardless of cavity vanes. Also, the pressure drop of the bypass pipeline increases when vanes are removed.

해수냉각 펌프의 캐비테이션 성능에 대한 수치해석 (Numerical Analysis on the Cavitation Performance of a Seawater Cooling Pump)

  • ;김준호
    • 해양환경안전학회지
    • /
    • 제25권1호
    • /
    • pp.130-137
    • /
    • 2019
  • 원심 해수냉각 펌프를 분석하기 위하여 다른 운전 유량에 대한 캐비테이션 거동을 조사하였다. 3D 2상 해석은 ANSYS-CFX 상용코드로 수행되었다. 해석에는 $k-{\varepsilon}$ 난류와 Rayleigh-Plesset cavitation 모델이 사용되었다. 수치 예측에 기초하여 세 가지 토출 유량값에 대하여 헤드 드롭 특성곡선이 작성되었다. 더 높은 유량에서 임펠러는 버블 캐비테이션에 보다 취약하다. 0.7Q, Q 및 1.3Q(Q: 설계 유량)에서 작동하는 펌프의 3 % 헤드 드롭 위치는 각각 NPSHa 1.21 m, 1.83 m 및 3.45 m에 해당한다. 증기 기포의 볼륨이 예측되고 캐비테이션의 위치는 임펠러 내에서 발생하는 캐비티를 시각화하여 예상하였다. 또한, 압력계수와 날개 부하 분포가 구체적으로 제시되어 캐비테이션이 펌프 운전에 미치는 해로운 영향을 나타냈다. 또한, 압력계수 분포와 날개부하 차트가 구체적으로 제시되어, 펌프 운전에 캐비테이션이 미치는 해로운 영향을 나타냈다.

부유식 일체형 소형워터제트 추진시스템 개발 (Development of a Small Floating Outboard Type Water-Jet Propulsion System)

  • 정재훈;이중섭;이치우
    • 한국생산제조학회지
    • /
    • 제25권1호
    • /
    • pp.42-47
    • /
    • 2016
  • This paper presents the development of a floating outboard type of compact water jet propulsion system. The planning case of the water jet system is developed by performing precision processing after manufacturing FRP (Fiber Reinforced Plastics) from plug mold casting. This system is composed of an intake, impeller, diffuser, reverse bucket, and main shaft. In addition, a rebuilt engine was applied through marine engineering. The water jet propulsion system performance was verified to discharge a maximum $0.29m^3/s$ of flow rate and 37 m/s of flow velocity in a test pool on land. A field test was performed by installing the water jet propulsion device on board a ship that was tested off the coast of Korea. The weight of the hull, engine, and other equipment was approximately 1.2 tons, and the sailing speed was a maximum 22 knots at 3,600 rpm.