DOI QR코드

DOI QR Code

Numerical Analysis on the Cavitation Performance of a Seawater Cooling Pump

해수냉각 펌프의 캐비테이션 성능에 대한 수치해석

  • Tran, Bao Ngoc (Graduate School of Mokpo National Maritime University) ;
  • Kim, Jun-ho (Division of Mechatronics Engineering, Mokpo National Maritime University)
  • ;
  • 김준호 (목포해양대학교 해양메카트로닉스학부)
  • Received : 2018.12.28
  • Accepted : 2019.02.25
  • Published : 2019.02.28

Abstract

In this study, a centrifugal seawater cooling pump was analyzed to investigate its cavitation behavior over different operating flow rates. 3D two-phase simulations were carried out with ANSYS-CFX commercial code. The $k-{\varepsilon}$ turbulence and Rayleigh-Plesset cavitation models were employed in the simulations. A head drop characteristics curves for three discharge rates was built based on numerical predictions. At higher flow rates, the impeller was more vulnerable to bubble cavitation. The 3 % head drop points of the pump working at 0.7Q, Q, and 1.3Q (Q: design flow rate) corresponded with NPSHa 1.21 m, 1.83 m, and 3.45 m, respectively. The volume of vapor bubbles was estimated and cavitation locations were anticipated to visualize the development of the cavity within the impeller. Moreover, the distribution of pressure coefficient and a blade loading chart are specifically presented, bringing out the harmful impacts of cavitation on the pump operation.

원심 해수냉각 펌프를 분석하기 위하여 다른 운전 유량에 대한 캐비테이션 거동을 조사하였다. 3D 2상 해석은 ANSYS-CFX 상용코드로 수행되었다. 해석에는 $k-{\varepsilon}$ 난류와 Rayleigh-Plesset cavitation 모델이 사용되었다. 수치 예측에 기초하여 세 가지 토출 유량값에 대하여 헤드 드롭 특성곡선이 작성되었다. 더 높은 유량에서 임펠러는 버블 캐비테이션에 보다 취약하다. 0.7Q, Q 및 1.3Q(Q: 설계 유량)에서 작동하는 펌프의 3 % 헤드 드롭 위치는 각각 NPSHa 1.21 m, 1.83 m 및 3.45 m에 해당한다. 증기 기포의 볼륨이 예측되고 캐비테이션의 위치는 임펠러 내에서 발생하는 캐비티를 시각화하여 예상하였다. 또한, 압력계수와 날개 부하 분포가 구체적으로 제시되어 캐비테이션이 펌프 운전에 미치는 해로운 영향을 나타냈다. 또한, 압력계수 분포와 날개부하 차트가 구체적으로 제시되어, 펌프 운전에 캐비테이션이 미치는 해로운 영향을 나타냈다.

Keywords

References

  1. Bachert, R., B. Stoffel and M. Dular(2010), Unsteady Cavitation at the Tongue of the Volute of a Centrifugal Pump, Journal of Fluids Engineering, Vol. 132, No. 6, pp. 061304-1-061301-6.
  2. Caridad, J., M. Asuaje, F. Kenyery, A. Tremante and O. Aguillon(2008) Characterization of a centrifugal pump impeller under two-phase flow conditions. Journal of Petroleum Science and Engineering, Vol. 63, pp. 18-22. https://doi.org/10.1016/j.petrol.2008.06.005
  3. Cernetic, J. and M. Cudina(2011), Estimating unsteady of measurements for cavitation detection in a centrifugal pump, Measurement, Vol. 44, No. 7, pp. 1293-1299. https://doi.org/10.1016/j.measurement.2011.03.023
  4. Ferziger, J. H. and M. Peric(1996), Computational Method of Fluid Dynamics, Springer, Berlin, Germany.
  5. Kim, M. J., H. B. Jin and W. J. Chung(2012), A Study on Prediction of Cavitation for centrifugal pump, International Journal of Mechanical, Vol. 6, No. 12, pp. 2720-2725.
  6. Lorusso, M., T. Capurso, M. Torresi, B. Fortunato, F. Fornarelli, S. M. Camporeale and R. Monteriso(2017), Efficient CFD evaluation of the NPSH for centrifugal pumps, Energy Procedia, Vol. 126, pp. 778-785. https://doi.org/10.1016/j.egypro.2017.08.262
  7. Nohmi, M., A. Goto, Y. Iga and T. Ikohagi(2003), Cavitation CFD in a centrifugal pump, Proceeding of Fifth International Symposium on Cavitation, pp. 1-7.
  8. Stuparu, A., R. S. Resiga, L. E. Anton and S. Muntean(2011), A New Approach in Numerical Assessment of the Cavitation Behaviour of Centrifugal Pumps, International Journal of Fluid Machinery and System, Vol. 4, No. 1, pp. 104-113. https://doi.org/10.5293/IJFMS.2011.4.1.104
  9. Tran, B. N., C. J. Yang, B. G. Kim and J. H. Kim(2017), Internal Flow Analysis of Seawater Cooling Pump using CFD, Journal of the Korean Society of Marine Environment and Safety, Vol. 23, No. 1, pp. 104-111. https://doi.org/10.7837/kosomes.2017.23.1.104
  10. Tran, T. D., B. Nennemann, T. C. Vu and F. Guibault(2015), Investigation of Cavitation Models for Steady and Unsteady Cavitating Flow Simulation, International Journal of Fluid Machinery and Systems, Vol. 8, No. 4, pp. 240-253. https://doi.org/10.5293/IJFMS.2015.8.4.240
  11. Zhang, S., R. Zhang, S. Zhang and J. Yang(2016), Effect of Impeller Inlet Geometry on Cavitation Performance of Centrifugal Pumps Based on Radial Basis Function, International Journal of Rotating Machinery, Vol. 2016, pp. 1-9.
  12. Zhu, B., H. Chen and Q. Wei(2014), Numerical and Experimental Investigation of Cavitating Characteristics in Centrifugal Pumps with Gap Impeller, International Journal of Turno Jet-Engines, Vol. 31, No. 2, pp. 187-196.