• 제목/요약/키워드: Impeller Optimization

검색결과 85건 처리시간 0.024초

원심압축기 임펠러의 형상 설계 최적화에 관한 수치적 연구 (A Numerical Study on Shape Design Optimization for an Impeller of a Centrifugal Compressor)

  • 서정민;박준영;최범석
    • 한국유체기계학회 논문집
    • /
    • 제17권3호
    • /
    • pp.5-12
    • /
    • 2014
  • This paper presents a design optimization for meridional profile and blade angle ${\theta}$ of a centrifugal compressor with DOE (design of experiments) and RSM (response surface method). Control points of the $3^{rd}$ order Bezier curve are used for design parameters and specific overall efficiency is used as object function. The response surface function shows good agreement with the 3D computational results. Three different optimized designs are proposed and compared with reference design at design point and off-design point. Contours of relative Mach number, static entropy, and total pressure are analyzed for improvement of performance by optimization. Off-design performance analysis is conducted by total pressure and efficiency.

성능 향상을 위한 2 Vane 펌프 임펠러 및 벌류트 설계 최적화 (Design Optimization of 2 Vane Pump Impeller and Volute for Performance Improvement)

  • 김성;마상범;최영석;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제31권4호
    • /
    • pp.395-403
    • /
    • 2020
  • In this paper, the performance characteristics of the impeller and volute in the 2 vane pump were investigated using response surface method (RSM) with commercial computation fluid dynamics (CFD) code. Design variables were defined with the impeller blade angle and volute area distribution. The objective functions were defined as the total head, total efficiency and solid material size of the 2 vane pump. The design optimization of the design variables was determined using the RSM. The numerical results for the reference and optimum models were compared and discussed in this work.

유동장 해석을 통한 승용차 원심 회전차의 형상 설계 (Design of Centrifugal Impeller for Passenger Car by Flow Field Analysis)

  • 이동렬
    • 한국기계기술학회지
    • /
    • 제13권3호
    • /
    • pp.49-55
    • /
    • 2011
  • For the purpose of the enhancement of the air conditioner performance and fuel effciency, several cases of centrifugal impeller for passenger car air conditioner have been numerically analyzed by changing central angle of blades and length of outlet for shape optimization of the impeller. Commercial CFD program Fluent 6.3.26 has been used to compute velocity, temperature, pressure and turbulence intensity that can lead numerous results. The central angles of two blades and three cases of outlet length led 4~12% and 3.5~6.4% differences of velocity and flow rate, respectively. The velocity distribution near the blade surface was axisymmetric and had a maximum value of 22.19 m/s and velocity of the vertical direction of the impeller showed linear increase with horizontal direction. At case 3 of oultet length, there existed a a minimum pressure value of -133320 Pa.

반응표면법을 이용한 원심압축기 임펠러 쉬라우드 형상최적설계 (Optimal Design of Impeller Shroud for Centrifugal Compressor Using Response Surface Method)

  • 강현수;황인주;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제18권4호
    • /
    • pp.43-48
    • /
    • 2015
  • In this study, a method for optimal design of impeller shroud for centrifugal compressor using response surface method (RSM) and multi-objective genetic algorithm (MOGA) was studied. Numerical simulation was conducted using ANSYS CFX with various configurations of shroud. Each of the design parameters was divided into 3 levels. Total 15 design points were planned by central composite design (CCD) method, which is one of the design of experiment (DOE) techniques. Response surfaces based on the results of DOE were used to find the optimal shape of impeller shroud for high aerodynamic performance. The whole process of optimization was conducted using ANSYS Design Xplorer (DX). Results showed that the isentropic efficiency, which is the main performance parameter of the centrifugal compressor, was increased 0.4% through the optimization.

원심다익송풍기의 고효율 설계를 위한 수치최적설계 (Numerical Optimization of a Multi-blades Centrifugal Fan for High-efficiency Design)

  • 서성진;김광용
    • 한국유체기계학회 논문집
    • /
    • 제7권3호
    • /
    • pp.32-38
    • /
    • 2004
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard $k-{epsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

원심다익송풍기의 고효율 설계를 위한 수치최적설계 (Numerical Optimization of A Multi-Blades Centrifugal Fan For High-Efficiency Design)

  • 서성진;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2003년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.385-390
    • /
    • 2003
  • Shape of a multi-blades centrifugal fan is optimized by response surface method based on three-dimensional Navier-Stokes analysis. For numerical analysis, Reynolds-averaged Wavier-Stokes equations with standard $k-{\varepsilon}$ turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Optimizations with and without constraints are carried out. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. The correlation of efficiency with relative size of inactive zone at the exit of impeller is discussed as well as with average momentum fluxes in the scroll.

  • PDF

설계유량을 변수로 한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan With Variable Design Flow Rate)

  • 서성진;김광용
    • 대한기계학회논문집B
    • /
    • 제28권11호
    • /
    • pp.1332-1338
    • /
    • 2004
  • This paper presents the response surface optimization method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan. For numerical analysis, Reynolds-averaged Navier-Stokes equations with k-$\varepsilon$ turbulence model are discretized with finite volume approximations. In order to reduce huge computing time due to a large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models. Three geometric variables, i.e., location of cut off, radius of cut off, and width of impeller, and one operating variable, i.e., flow rate, were selected as design variables. As a main result of the optimization, the efficiency was successfully improved. And, optimum design flow rate was found by using flow rate as one of design variables. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

터보블로어 설계인자의 성능특성 연구 (Performance Analysis on the Design Variables of a Turbo Blower)

  • 장춘만;양상호
    • 한국유체기계학회 논문집
    • /
    • 제14권2호
    • /
    • pp.47-51
    • /
    • 2011
  • This paper describes the shape optimization of a blower impeller used for a refuse collection system. Two design variables, which are used to define the blade angles of an impeller, are introduced to increase the blower performance. A blower efficiency is selected as an object function, and the shape optimization of the blade angles is performed by a response surface method (RSM). Three-dimensional Navier-Stokes equations are introduced to analyze the internal flow of the blower and to find the value of object function for the training data. Relatively good agreement between experimental measurements and numerical simulation is obtained in the present study. Throughout the shape optimization, blower efficiency for the optimal blade angles is successfully increased up to 3.6% compared with that of reference at the design flow rate. Detailed flow field inside the turbo blower is also analyzed and discussed.

자오면 고정 형상에서 사류펌프 임펠러 및 디퓨져 날개형상 설계 (Blade Shape Design of Mixed-flow Pump Impellers and Diffusers in a Fixed Meridional Geometry)

  • 김성;최영석;이경용
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1203-1208
    • /
    • 2009
  • In this paper, the flow characteristics of the mixed-flow pump impellers and diffusers were numerically predicted by commercial CFD software and DOE(design of experiments). We also discussed how to improve the performance of the mixed-flow pump by designing the impeller and diffuser in the mixed-flow pump. Geometric design variables were defined by the vane plane development which indicates the blade-angle distributions and length of the impeller and the diffusers. Firstly, the design optimization of the defined impeller geometric variables has been done. After that, the flow characteristics were analyzed in the point of incidence angle at the diffuser leading edge for the optimized impeller. Then design of the defined diffuser shape variables has been performed. The reason for the performance improvement was discussed by examining the flow characteristics through the diffuser.

  • PDF

쿨런트 펌프 임펠러 형상 최적화를 통한 성능개선에 관한 연구 (Study on Improvement of Performance by Optimizing Impeller Shape of a Coolant Pump)

  • 길민형;이건명
    • 한국기계가공학회지
    • /
    • 제18권5호
    • /
    • pp.48-52
    • /
    • 2019
  • A coolant pump is the device that cools processed articles and tools when using cutting, boring, and grinding machine tools and provides cutting oil for distributing or cleansing the cut chip to the worktable, processing position, etc. In particular, it consumes a large proportion of energy in machine tools, so it plays an important role in terms of energy efficiency. The purpose of this research is to optimize the shape of impeller, which directly affects performance improvements, to determine the capacity of the coolant pump. To do so, we carried out a parametric analysis with the geometric shape of the impeller as the input variable.