• Title/Summary/Keyword: Impeller Discharge Flow

Search Result 32, Processing Time 0.023 seconds

Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART (일체형원자로 SMART 냉각재 순환펌프의 전산성능예측)

  • Kim M. H;Lee J. S;Park J. S;Kim J. I;Kim K. K
    • Journal of computational fluids engineering
    • /
    • v.8 no.3
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.

Internal Flow Analysis of Seawater Cooling Pump using CFD (CFD를 이용한 해수냉각펌프의 내부유동 분석)

  • Bao, Ngoc Tran;Yang, Chang-jo;Kim, Bu-gi;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • This research focuses on simulation and visualization of flow field characteristics inside a centrifugal pump. The 3D numerical analysis was carried out by using a numerical CFD tool, addressing a Reynolds Average Navier-Stock code with a standard k-${\varepsilon}$ two-equation turbulence model. The simulation accounts for friction head loss due to rough walls at suction, impeller, discharge areas and volumetric head loss at impeller wear ring. A comparison of performance curves between simulation and experimentation is included, and it reveals a same trend of those results with a small difference of maximum 5 %. At best efficiency point, velocity vectors are smooth but it changes significantly under off-design point, a strong recirculation appears at the outlet of impeller passages near tongue area. A relatively uniform preassure distribution was observed around the impeller in despite of the tongue. Within the volute, because of its geometry, spiral vortexes formed, proving that the flow field in this region was relatively turbulent and unsteady.

Effects of Casing Shape on the Performance of a Small-Size Turbo-Compressor (케이싱 형상 변화가 소형 터보압축기 성능에 미치는 영향)

  • 김동원;김윤제
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1031-1038
    • /
    • 2002
  • The effects of casing shape on the performance and interaction between the impeller and casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuer and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and three-dimensional time-averaged Wavier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around casing and pressure difference between the inlet and outlet of the compressor are peformed for the circular casing. Comparisons of these results between the experimental and numerical analyses are conducted, and reasonable agreement is obtained.

Performance Optimization of High Specific Speed Pump-Turbines by Means of Numerical Flow Simulation (CFD) and Model Testing

  • Kerschberger, Peter;Gehrer, Arno
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.352-359
    • /
    • 2010
  • In recent years, the market has shown increasing interest in pump-turbines. The prompt availability of pumped storage plants and the benefits to the power system achieved by peak lopping, providing reserve capacity, and rapid response in frequency control are providing a growing advantage. In this context, there is a need to develop pumpturbines that can reliably withstand dynamic operation modes, fast changes of discharge rate by adjusting the variable diffuser vanes, as well as fast changes from pumping to turbine operation. In the first part of the present study, various flow patterns linked to operation of a pump-turbine system are discussed. In this context, pump and turbine modes are presented separately and different load cases are shown in each operating mode. In order to create modern, competitive pump-turbine designs, this study further explains what design challenges should be considered in defining the geometry of a pump-turbine impeller. The second part of the paper describes an innovative, staggered approach to impeller development, applied to a low head pump-turbine project. The first level of the process consists of optimization strategies based on evolutionary algorithms together with 3D in-viscid flow analysis. In the next stage, the hydraulic behavior of both pump mode and turbine mode is evaluated by solving the full 3D Navier-Stokes equations in combination with a robust turbulence model. Finally, the progress in hydraulic design is demonstrated by model test results that show a significant improvement in hydraulic performance compared to an existing reference design.

A Study on the Break-down Characteristics of a Screw-type Centrifugal Pump due to Air Entrainment (공기흡입에 의한 스크류식 원심펌프의 양수불능 특성에 관한 연구)

  • Kim, You-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.3 s.20
    • /
    • pp.58-63
    • /
    • 2003
  • The performance of turbo pump drops rapidly and it gets into break-down when the void fraction reaches above the threshold value because the impeller flow passage is choked up with air bubbles. Phenomenological understanding of break-down and pumping recovery mechanisms under air-water two-phase flow conditions are therefore important for pump designers and essential assignment for researchers. In this paper, we investigated the characteristics of break-down and pumping recovery due to entrained air occurring inside a screw-type centrifugal pump which has a wide flow passage mainly through the findings of suction and discharge pressures, rotational speed, flow rate measurements and visualization.

A Study on Performance of Cooling Fan for Auto Transmission Oil Cooler in the Large-Size Diesel Engine (대형 디젤엔진 자동변속기 오일쿨러 냉각팬 성능에 관한 연구)

  • Yi, Chung-Seob;Suh, Jeong-Se;Song, Chul-Ki;Yun, Ji-Hun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.71-76
    • /
    • 2010
  • This study has investigated numerically and experimentally the flow characteristic of air-cooling fan for transmission oil cooler in the large-size diesel engine. Impellers of cooler were composed of eight normal-scale and eight small-scale blades in the zig-zag pattern. In order to increase the discharge pressure of cooling fan, turbo type of fan blade is proposed in the impeller for transmission oil cooler. The fluidic performance of cooling fan has been estimated numerically by using the commercial code and experimentally carried out with reference on AMCA Standard 210-99. As a result, it is confirmed that the numerical result for performance curve is in good agreement with experimental data.

Testing and Modification of an Axial Flow Irrigation Pump manufactured in Vietnam

  • V.M.Salokhe;Khanh, Vu-Tuan
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.247-256
    • /
    • 1996
  • The performance of a commonly used, inclined shaft, axial flow pump manufactured in Vietnam was evaluated . The pump tested had a 37 cm diameter thrust impeller and 40 cm outlet diameter. This pump was initially evaluated to establish the base performance curves for three total static heads of 1.45 m, 1.75m and 2.15 m at a constant recommended speed of 980 rpm. In the field survey, brass sleeve , impeller and lubricating system. These parts of the pump were modified and then it was tested again at the same test conditions used for the original one. Maximum efficiency of the original pump varied from 56.11% to 53.15% , and that of the modified pump from 57.63% to 54.52% when the total static head varied from 1.45 m to 2.15m . At these total static heads, the discharge, the total head and the power input varied from 387 to 347l/s, 4.25 to 4.60m and 28.72 to 29.38kW, respectively, for the original pump and from 388 to 346l/s , 4.29 to 4.63 m and 28.23 to 28.91 kw, respectivel , for the modified pump. The efficiency of the pump after modification increased by more than 1.5% and the power input decreased by 1.7%.

  • PDF

Axial Thrust Control of High-speed Centrifugal Pump with Cavity Vanes (캐비티 베인이 있는 고속 원심펌프의 축추력 제어)

  • Kim, Dae-Jin;Choi, Chang-Ho;Noh, Jun-Gu;Kim, Jinhan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.46-50
    • /
    • 2012
  • A high-speed centrifugal pump requires more attention to the control of its axial thrust due to the high discharge pressure than a conventional industrial pump. Vanes employed toward the rear cavity of the impeller can be an effective device to control the axial thrust of the pump. The vanes disturb circumferential flow of the cavity and it can modify the axial force acting on the impeller. In this paper, three types of vanes are installed in the high-speed centrifugal pump for liquid rocket engines and the thrust of the pump is measured with an additional thrust measurement unit. According to the results, shapes of cavity vanes have effects on the axial thrust of the pump. As the height of vanes increases, the outlet pressure of the rear floating ring seal decreases which results in a decrease of the thrust. On the other hand, head of the pump is almost same regardless of cavity vanes. Also, the pressure drop of the bypass pipeline increases when vanes are removed.

Numerical Analysis on the Cavitation Performance of a Seawater Cooling Pump (해수냉각 펌프의 캐비테이션 성능에 대한 수치해석)

  • Tran, Bao Ngoc;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.1
    • /
    • pp.130-137
    • /
    • 2019
  • In this study, a centrifugal seawater cooling pump was analyzed to investigate its cavitation behavior over different operating flow rates. 3D two-phase simulations were carried out with ANSYS-CFX commercial code. The $k-{\varepsilon}$ turbulence and Rayleigh-Plesset cavitation models were employed in the simulations. A head drop characteristics curves for three discharge rates was built based on numerical predictions. At higher flow rates, the impeller was more vulnerable to bubble cavitation. The 3 % head drop points of the pump working at 0.7Q, Q, and 1.3Q (Q: design flow rate) corresponded with NPSHa 1.21 m, 1.83 m, and 3.45 m, respectively. The volume of vapor bubbles was estimated and cavitation locations were anticipated to visualize the development of the cavity within the impeller. Moreover, the distribution of pressure coefficient and a blade loading chart are specifically presented, bringing out the harmful impacts of cavitation on the pump operation.

Development of a Small Floating Outboard Type Water-Jet Propulsion System (부유식 일체형 소형워터제트 추진시스템 개발)

  • Jeong, Jae Hoon;Yi, Chung Seob;Lee, Chi Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-47
    • /
    • 2016
  • This paper presents the development of a floating outboard type of compact water jet propulsion system. The planning case of the water jet system is developed by performing precision processing after manufacturing FRP (Fiber Reinforced Plastics) from plug mold casting. This system is composed of an intake, impeller, diffuser, reverse bucket, and main shaft. In addition, a rebuilt engine was applied through marine engineering. The water jet propulsion system performance was verified to discharge a maximum $0.29m^3/s$ of flow rate and 37 m/s of flow velocity in a test pool on land. A field test was performed by installing the water jet propulsion device on board a ship that was tested off the coast of Korea. The weight of the hull, engine, and other equipment was approximately 1.2 tons, and the sailing speed was a maximum 22 knots at 3,600 rpm.