• 제목/요약/키워드: Impeller Blade

검색결과 310건 처리시간 0.025초

실험계획법을 사용한 원심펌프 임펠러 최적설계 (Design Optimization of Centrifugal Pump Impeller Using DOE)

  • 김성;최영석;윤준용;김덕수
    • 한국유체기계학회 논문집
    • /
    • 제11권3호
    • /
    • pp.36-42
    • /
    • 2008
  • In this paper, the performance characteristics of the impeller in a centrifugal pump were investigated using DOE(Design of Experiment) with commercial CFD software. Geometric parameters of vane plane development were defined with the meridional shape and frontal view of the impeller. The incidence angles and the exit blade angle were selected as main parameters using 2k factorial and the influences of selected design parameters were examined through the optimization process using RSM.

임펠러 출구각 및 리어가이더 형상 변화에 따른 횡류홴의 성능 특성 (Performance Characteristics of a Cross-Flow Fan with Various Impeller Outlet Angles and Rearguiders)

  • 김형섭;김동원;윤태석;박성관;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.851-856
    • /
    • 2003
  • A cross-flow fan consists of an impeller, a stabilizer and a rearguider. When it applied for an air conditioner, an evaporator should be added. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there are a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, the reciprocal relation between the impeller and the flow passage is the important factor for performance improvement of the cross-flow tan because each parameter is independent. The performance characteristics in the cross-flow fan are graphically depicted with various impeller outlet angles and rearguiders.

  • PDF

상용 CFD코드를 이용한 입형 다단 원심펌프 성능해석 (Performance Analysis of the Vertical Multi-stage Centrifugal Pump using Commercial CFD Code)

  • 모장오;강신정;송근택;남청도;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.150-155
    • /
    • 2002
  • A commercial CFD code is applied to analyze the 3-D viscous flow field within vertical multi-stage centrifugal pump including impeller with 6 blades and guide vane with 11 blades and is performed by changing flow rate from 10 to $26m^3/h$ at the constant 3500rpm. The purpose of this 3-D numerical simulation is not only to confirm how much the effect of three kinds of blade inlet breadth (11mm, 11.5mm, 12mm) of impeller has influence on the performance of vertical multi-stage pump but also to make clear the cause about performance difference at the exit side of impeller and guide vane. The vertical multi-stage pump consisit of the impeller, guide, vane and cylinder. The grid of numerical analysis used to the vertical multi-stage pump is 18,000, 45,000, and 100000 cells in case of the impeller, guide vane, cylinder and total grid is 730,000 cells. The characteristics such as total pressure coefficient, total head, shaft horse power, power efficiency at the exit side of impeller and guide vane, discharge coefficient are represented according to flow rage changing.

  • PDF

삼차원 Navier-Stokes 해석과 반응면기법을 이용한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis and Response Surface Method)

  • 서성진;김광용
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1457-1463
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a multi-blade centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k - c turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in this centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time.

신경망 최적화 기법을 이용한 다익 홴/스크롤 시스템의 설부에 대한 형상 최적화 (Shape Optimization of Cut-Off in a Multi-blade Fan/Scroll System Using Neural Network)

  • 한석영;맹주성;유달현;진경욱
    • 대한기계학회논문집B
    • /
    • 제26권10호
    • /
    • pp.1341-1347
    • /
    • 2002
  • In order to improve efficiency of a system with three-dimensional flow characteristics, this paper presents a new method that overcomes three-dimensional effects by using two-dimensional CFD and neural network. The method was applied to shape optimization of cut-off in a multi-blade fan/scroll system. As the entrance conditions of two-dimensional CFD, the experimental values at the positions out of the inactive zone were used. The distributions of velocity and pressure obtained by two-dimensional CFD were compared with those of three-dimensional CFD and experimental results. It was found that the distributions of velocity and pressure have qualitative similarity. The results of two-dimensional CFD were used for teaming as target values of neural network. The optimal angle and radius of cut-off were determined as 71$^{\circ}$and 0.092 times the outer diameter of impeller, respectively. It is quantified in the previous report that the optimal angle and radius of cut-off are approximately 72$^{\circ}$and 0.08 times the outer diameter of impeller, respectively.

반응표면법을 이용한 다익 홴/스크롤 시스템의 설부에 대한 형상 최적화 (Shape Optimization of Cut-Off in a Multi-blade Fan/Scroll System Using Response Surface Method)

  • 한석영;맹주성;황영민
    • 한국자동차공학회논문집
    • /
    • 제11권1호
    • /
    • pp.225-231
    • /
    • 2003
  • In order to improve efficiency of a system with three-dimensional flow characteristics, this paper presents a new method that overcomes three-dimensional effects by using two-dimensional CFD and response surface method. The method was applied to shape optimization of cut-off in a multi-blade fan/scroll system. As the entrance conditions of two-dimensional CFD, the experimental values at the positions out of the inactive zone were used. In order to examine the validity of the two-dimensional CFD the distributions of velocity and pressure obtained by two-dimensional CFD were compared with those of three-dimensional CFD and experimental results. It was found that the distributions of velocity and pressure show qualitatively similarity. The results of two-dimensional CFD were used for constructing the objective function with design variables using response surface method. The optimal angle and radius of cut-off were determined as $72.4^{\circ}$ and 0.092 times the outer diameter of impeller, respectively. It is quantified the previous report that the optimal angle and radius of cut-off are approximately $72^{\circ}$ and 0.08 times the outer diameter of impeller, respectively.

삼차원 Navier-Stokes 해석을 이용한 원심다익송풍기의 최적설계 (Design Optimization of A Multi-Blade Centrifugal Fan with Navier-Stokes Analysis)

  • 서성진;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2157-2161
    • /
    • 2003
  • In this paper, the response surface method using three-dimensional Navier-Stokes analysis to optimize the shape of a forward-curved blades centrifugal fan, is described. For numerical analysis, Reynolds-averaged Navier-Stokes equations with standard k-e turbulence model are transformed into non-orthogonal curvilinear coordinate system, and are discretized with finite volume approximations. Due to the large number of blades in forward-curved blades centrifugal fan, the flow inside of the fan is regarded as steady flow by introducing the impeller force models for economic calculations. Linear Upwind Differencing Scheme(LUDS) is used to approximate the convection terms in the governing equations. SIMPLEC algorithm is used as a velocity-pressure correction procedure. Design variables, location of cur off, radius of cut off, expansion angle of scroll and width of impeller were selected to optimize the shapes of scroll and blades. Data points for response evaluations were selected by D-optimal design, and linear programming method was used for the optimization on the response surface. As a main result of the optimization, the efficiency was successfully improved. It was found that the optimization process provides reliable design of this kind of fans with reasonable computing time

  • PDF

40kW급 터보제너레이터용 원심압축기의 공력설계 및 유동해석 (Aerodynamic Design and Analysis of a Centrifugal Compressor in a 40kW Class Turbogenerator Gas Turbine)

  • 오종식;윤의수;조수용;오군섭
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 강연회 및 연구개발 발표회 논문집
    • /
    • pp.128-135
    • /
    • 1998
  • Procedures and results of aerodynamic design of a centrifugal compressor are presented for development of a 40kW class turbogenerator gas turbine. Specification of higher level of total pressure ratio of 4 and total efficiency of $80\%$ requires advanced methods of design and analysis. In the meanline design/analysis, a method with conventional loss modeling and a method with the two-zone model are alternately used for more reliable prediction. In the impeller blade generation, a series of Bezier curve are combined to produce meridional contours and distributions of blade camber angle and blade thickness. Intermediate profiles of blades are repeatedly produced and changed to be finally fixed through quasi-three dimensional Euler flow analysis. Three dimensional compressible turbulent flow analysis is then performed for the impeller to be confirmed in the final step of design. Satisfactory results in the aerodynamic performance are obtained, which assures that there is no need of aerodynamic re-design.

  • PDF

Numerical Investigation on Aerodynamic Performance of a Centrifugal Fan with Splitter Blades

  • Kim, Jin-Hyuk;Cha, Kyung-Hun;Kim, Kwang-Yong;Jang, Choon-Man
    • International Journal of Fluid Machinery and Systems
    • /
    • 제5권4호
    • /
    • pp.168-173
    • /
    • 2012
  • This paper presents a numerical investigation on the aerodynamic performance according to the application of splitter blades in an impeller of a centrifugal fan used for a refuse collection system. Numerical analysis of a centrifugal fan was carried out by solving three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model. A validation of numerical results was conducted by comparison with experimental data for the pressure and efficiency. From analyses of the internal flow field of the reference fan, the losses by the reverse-flows were observed in the region of the blade passage. In order to reduce these losses and enhance fan performance, two splitter blades were applied evenly between the main blades, and centrifugal impellers having the different numbers of the main blades were tested with their application. Throughout the numerical analyses of the centrifugal fan with splitter blades, it was found that the reverse-flow regions in the blade passage can be reduced by controlling the main blade numbers with splitter blades. The application of splitter blades in a centrifugal fan leads to significant improvement in the overall fan performance.

원심홴의 설계 변수가 홴의 성능과 소음에 미치는 영향의 수치적 연구 (A Numerical Study of the Effects of Design Parameter upon Fan Performance and Noise)

  • 전완호;이덕주
    • 한국유체기계학회 논문집
    • /
    • 제2권3호
    • /
    • pp.45-51
    • /
    • 1999
  • Centrifugal fans are widely used and the noise generated by these machines causes one of the most serious problems. In general, the centrifugal fan noise is often dominated by tones at BPF(blade passage frequency) and its higher harmonics. This is a consequence of the strong interaction between the flow discharged from the impeller and the cutoff in the casing. However, only a few researches have been carried out on predicting the noise due to the difficulty in obtaining detailed information about the flow field and casing effects on noise radiation. The objective of this study is to develop a prediction method for the unsteady flow field and the acoustic pressure field of a centrifugal fan and to calculate the effects of rotating velocity, flow rate, cut-off distance and the number of blades and its effects on the noise of the fan. We assume that the impeller rotates with a constant angular velocity and the flow field around the impeller is incompressible and inviscid. So, a discrete vortex method (DVM) is used to model the centrifugal fan and to calculate the flow field. The force of each element on the blade is calculated with the unsteady Bernoulli equation. Lowson's method is used to predict the acoustic source. The cut-off distance is the most important factor effecting the noise generation. Acoustic pressure is proportional to 2.8, which shows the same scaling index as the experimental result. In this paper, the cut-off distance is found to be the dominant parameter offecting the acoustic pressure.

  • PDF