Vacuum cleaner is a close life product that can remove various dusts from our surroundings. However well vacuum cleaner clean our environments, many people are looking away from it, due to its loud noise. Its noise causes a big trouble in the usual life, for example, catch calls, TV watching and discussing etc. To reduce these inconveniences, noise reduction methods and systematic design of low noise vacuum cleaner are studied in this paper. At first, sound quality investigation is performed to get the noise level and quality that make people TV watching and catch calls available. Based on the European and domestic customer SQ survey result, sound power, peak noise level and target sound spectrum guideline are studied and introduced. As a second, precise product sound spectrums are designed into each part based on the sound quality result. Fan-motor, brush, mainbody, cyclone spectrums are decided to get the final target sound based on the contribution level. Fan-motor is the major noise source of vacuum cleaner. Specially, its peak sound, RPM peak and BPF Peak, cause the people nervous. To reduce these peak sounds, high rotating impeller and diffuser are focused due to its interaction. A lot of experimental and numerical tests, operation points are investigated and optimization of flow path area between diffusers is performed. As a bagless device, cyclones are one of the major noise sources of vacuum cleaner. To reduce its noise, previous research is used and adopted well. Brush is the most difficult part to reduce noise. Its noise sources are all comes from aero-acoustic phenomena. Numerical analysis helps the understanding of flow structure and pattern, and a lot of experimental test are performed to reduce the noise. Gaps between the carpet and brush are optimized and flow paths are re-designed to lower the noise. Reduction is performed with keeping the cleaning efficiency and handling power together and much reduction of noise is acquired. With all above parts, main-body design is studied. To do a systematic design, configuration design developments technique is introduced from airplane design and evolved with each component design. As a first configuration, fan-motor installation position is investigated and 10 configuration ideas are developed and tested. As a second step, reduced size and compressed configuration candidates are tested and evaluated by a lot of major factor. Noise, power, mass production availability, size, flow path are evaluated together. If noise reduction configuration results in other performance degrade, the noise reduction configuration is ineffective. As a third configuration, cyclones are introduced and the size is reduced one more time and fourth, fifth, sixth, seventh configuration are evolved with size and design image with noise and other performance indexes. Finally we can get a overall much noise level reduction configuration. All above investigations are adopted into vacuum cleaner design and final customer satisfaction tests in Europe are performed. 1st grade sound quality and lowest noise level of bagless vacuum cleaner are achieved.