DOI QR코드

DOI QR Code

Effect on the Production of Toxin Protein of Bacillus thuringiesis by Culture Conditions

배양 조건이 Bacillus thuringiesis 독소단백질의 생산에 미치는 영향

  • Kim, Tae Wan (Central Research Institute, WooGene B&G CO., LTD.) ;
  • Kim, Tae Hwan (Central Research Institute, WooGene B&G CO., LTD.) ;
  • Yu, Yong Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University)
  • 김태완 (우진비앤비(주) 중앙연구소) ;
  • 김태환 (우진비앤비(주) 중앙연구소) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과)
  • Received : 2014.11.07
  • Accepted : 2014.11.23
  • Published : 2014.12.31

Abstract

We was investigated parasporal inclusion proteins change to use industrial medium of new strain Bacillus thuringiensis CAB 565, CAB 566. To confirm medium's oxygen efficient consist of glucose and yeast extract, we was conducted oxygen transfer coefficients (KLa) of medium's concentration and impeller in 20 l-Jar fermentor. When to increase air flow rate and medium concentration, KLa rate is rise. Also it is effective on agitation rate 200 rpm, but KLa rate is decrease when to rise agitation rate. To hold dissolved oxygen rate (upper 50%), Air flow rate is steadily increase on culture to use microsparger. When 16 hour of culture stage, B.t. CAB 565 and B.t. CAB 566 harvested respectively $2.3{\times}10^{10}$, $1.8{\times}10^{10}$ viable cell/ml. When 54 hour, B.t. CAB565, 566 harvested respectively $1.9{\times}10^{10}$, $1.4{\times}10^{10}spore/ml$. To resulting carbon's concentration, It is the most effective that glucose concentration is contained 5% in medium.

신규 병원성세균 Bacillus thuringiensis CAB565, 566균주를 이용한 산업배지에서의 배양조건에 따른 독소단백질의 차이를 확인하였다. 포도당, 효모추출물 등으로 구성된 산업배지의 산소 전달 속도를 확인하고자 소형배양기에서 임펠러와 배지 농도에 따른 산소전달계수(KLa)의 차이를 확인하였다. 교반기의 통기량이 많을수록 그리고 배지 농도가 높아질수록 산소전달계수(KLa) 값이 상승하였다. 하지만 교반속도는 200 rpm에서 가장 효율적이었고, 교반속도가 상승할수록 효과가 떨어졌다. Microsparger를 이용하여 배양 중 단계적으로 통기속도를 높여 배지내 용존산소농도를 50% 이상으로 유지시켜 배양한 결과 생균수는 배양 후 16시간, 포자수는 54시간에 최대의 농도값을 보였다. 그 결과, B.t. CAB565의 생균수는 $2.3{\times}10^{10}cell/ml$, 포자수는 $1.9{\times}10^{10}spore/ml$ 그리고 B.t. CAB566의 생균수는 $1.8{\times}10^{10}cell/ml$, 포자수는 $1.4{\times}10^{10}spore/ml$를 보였다. 탄소원의 농도는 포도당의 농도가 5%일 때, 세포성장에 가장 유리한 것으로 조사되었다.

Keywords

References

  1. Andrews, E. E. Jr., R. M. Faust, H. Wabiko and K. C. Raymond (1987) The biology of Bacillus thuringiensis. CRC Crit. Rev. Biotechnol. 6(2):163-232. https://doi.org/10.3109/07388558709113596
  2. Aronson, A. I., W. Beckman and P. Dumn (1986) Bacillus thuringiensis and related insect pathogens, Microbial, Rev. 50:1.
  3. Benoit, T. G., G. R. Wilson and C. L. Baugh (1990) Fermentation during growth and sporulation of Bacillus thuringiensis HD-1. Lett. Appl. Microbiol. 10:15-18. https://doi.org/10.1111/j.1472-765X.1990.tb00084.x
  4. Bradford M. M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical biochemistry. 72(1):248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  5. Farrera R. R., F., Perez-guevara, de la Torre (1998) Carbon : nitrogen ratio interacts with initial noncentration of total solids on insecticidal crystal protein and spore production in Bacillus thuringiensis HD-73. Appl Microbiol Biotechnol 49:758-765. https://doi.org/10.1007/s002530051243
  6. Hofte, H. and H. R. Whiteley (1989) Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53:242-255.
  7. Holmberg, A., R. Sievamen and G. Carlberg (1980) Fermentation of Bacillus thuringiensis for exotoxin production : Process analysis study. Biotechnol. Bioeng. 22:1707-1724. https://doi.org/10.1002/bit.260220812
  8. Icgen Y., B. Icgen and G. Ozcengiz (2002) Regulation of crystal protein biosynthesis by Bacillus thuringiensis : 1. Effects of mineral elements and pH. Research in Microbiology 153:599-604. https://doi.org/10.1016/S0923-2508(02)01367-0
  9. Icgen Y., B. Icgen and G. Ozcengiz (2002) Regulation of crystal protein biosynthesis by Bacillus thuringiensis : 2. Effects of carbon and nitrogen sources. Research in Microbiology 153:605-609. https://doi.org/10.1016/S0923-2508(02)01366-9
  10. Khedher S. B., S. Jaoua and N. Zouari (2014) Overcome of carbon catabolite repression of bioinsecticides production by sporeless Bacillus thuringiensis through adequate fermentation technology. Biotechnology Research International. 2014:8-15.
  11. Krieg, A. and H. G. Miltenburger (1984) Bioinsecticides. 1. Bacillus thuringiensis. Adv. Biotechnol. Process 3:273.
  12. Morris. O. N., V. Converse, P. Kanagaratnam and J. S. Dacies (1996) Effect on cultural conditions on spore-crystal yield and toxicity of Bacillus thuringiensis subsp. aizawai(HD-133). J. Invertebr. Pathol. 67:129-136. https://doi.org/10.1006/jipa.1996.0020
  13. Mummigatti, S. G. and A. N. Raghunathan (1990) Influence of media composition on the production of dendotoxin by Bacillus thuringiensis. J. Invertebr. Pathol. 55: 147-151. https://doi.org/10.1016/0022-2011(90)90049-C

Cited by

  1. Determination of Mass Culture Method of Marine-derived Micro Organism, Bacillus sp. 2-4 (KCCMI 11107P) with Antimicrobial Acitivity vol.30, pp.1, 2018, https://doi.org/10.13000/JFMSE.2018.02.30.1.123