• 제목/요약/키워드: Impeller

검색결과 1,005건 처리시간 0.023초

실선 물분사 추진장치 성능시험 및 모형선-실선 상관관계 (Performance Test and Model-Ship Correlation for a Waterjet Propulsion System)

  • 안종우;이창용;박영하;정종안;김병현
    • 대한조선학회논문집
    • /
    • 제35권4호
    • /
    • pp.11-18
    • /
    • 1998
  • 본 논문은 복합지지형 초고속 화물 시험선인 "나래"호에 장착된 물분사 추진장치에 대한 해상성능시험에 대하여 기술하였다. 물분사 추진 장치에서 제트 속도, 임펠러에 걸리는 추력 및 토오크 계측 방법에 대해 설명하였다. 해상성능시험 결과로부터 물분사 추진장치의 성능을 분석하였고, 1996년에 수행된 유사 물분사 추진장치 모형시험 결과와 비교하였다. 해상성능시험로부터 추정된 유효마력은 모형선 결과와 좋은 일치를 보여준다. 시험선의 최적 부상 높이는 0.75m로 추정되고 물분사 추진장치의 준추진효율은 15노트에서 0.315으로 추정되었다. 본 시험을 통하여 펌프의 성능, 제트 효율, 유입부 덕트와 노즐에서의 손실 등에 관한 유용한 자료를 확보하였으며, 모형시험 결과와 유사한 경향을 보여주었다.

  • PDF

흄드실리카로부터 제조된 실리카졸의 분산인자 상관성 연구 (Correlation Research of Dispersion Factors on the Silica Sol Prepared from Fumed Silica)

  • 박민경;김훈;임형미;최진섭;김대성
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.136-142
    • /
    • 2016
  • To study the dispersion factors of silica sol prepared from fumed silica powder, we prepared silica sol under an aqueous system using a batch type bead mill. The dispersion properties of silica sol have a close relationship to dispersion factors such as pH, milling time and speed, the size and amount of zirconia beads, the solid content of fumed silica, and the shape and diameter of the milling impellers. Especially, the silica particles in silica sol were found to show dispersion stability on a pH value above 7, due to the electrostatic repulsion between the particles having a high zeta potential value. The shape and diameter of the impellers installed in the bead mill for the dispersion of fumed silica was very important in reducing the particle size of the aggregated silica. The median particle size ($D_{50}$) of silica sol obtained after milling was also optimized according to the variation of the size and amount of the zirconia beads that were used as the grinding medium, and according to the solid content of fumed silica. The dispersion properties of silica sol were investigated using zeta potential, turbiscan, particle size analyzer, and transmission electron microscopy.

기계적합금화법에 의해 제조된 W-20wt.%Cu복합재의 치밀화 거동 (Densification Behavior of W-20wt.% Cu Composite Materials Fabricated by Mechanical Alloying Method)

  • 김보수;안인섭
    • 한국재료학회지
    • /
    • 제5권6호
    • /
    • pp.627-632
    • /
    • 1995
  • 고출력 IC회로의 방열재료 및 전기접점재료로 이용되고 있는 W-Cu복합재료를 기계적합금화법으로 제조하였다. 기계적합금화한 분말을 300MPa로 폭 16mm, 높이 4mm의 원반형으로 제조하였다. 소결은 120$0^{\circ}C$에서 140$0^{\circ}C$까지 수소분위기에서 행하였다. 이렇게 제조된 시편의 절단된 면을 연마하여 SEM으로 관찰하였다. 균질한 W-Cu복합재료를 10시간 기계적합금화를 행한 후에 얻을 수 있었고, 133$0^{\circ}C$에서 1시간 소결한 시편의 경우 거의 99%에 가까운 치밀한 조직을 얻을 수 있었다. 또한 기계적합금화시간이 증가함에 따라서 Fe의 혼입은 직선적으로 증가하였으며, 이로 인한 금속간화합물상의 형성은 W입자 성장을 방해하고 경도를 증가시켰다.

  • PDF

서지성능 향상을 위한 원심압축기의 Bleed Slot Casing의 설계변수에 대한 해석 및 시험 평가 (Numerical and Experimental Study on the Surge Performance Improvement by the Bleed Slot Casing of a Centrifugal Compressor)

  • 김홍원;정재훈;류승협;이근식
    • 한국유체기계학회 논문집
    • /
    • 제18권2호
    • /
    • pp.22-28
    • /
    • 2015
  • The primary design goal of a compressor is focused on improving efficiency. Secondary objective is to widen the operating range of compressor. This paper presents a numerical and experimental investigation of the influence of the bleed slot on the operating range for the 1.2 MW class centrifugal compressor installed in a turbocharger. The main design parameters of the bleed slot casing are upstream slot position, inlet pipe slope, downstream slot position and width. The DOE(design of experiment) method was carried out to optimize the casing design. Numerical analyses were done by the commercial code ANSYS-CFX based on the three dimensional Reynolds-averaged Navier-Stokes equations. Results showed that efficiency and pressure ratio increased as the downstream slot position and width were smaller and the upstream position was located away from the impeller inlet. Experimental works were also done with and without the bleed slot casing. The simulation results were in good agreement with the test data. Enhancement of both the surge margin up to 26.5% and the pressure ratio with the optimized bleed slot design were achieved, compared with the surge margin of only 6.6% without the bleed slot casing.

Flow Investigations in the Crossover System of a Centrifugal Compressor Stage

  • Reddy, K. Srinivasa;Murty, G.V. Ramana;Dasgupta, A.;Sharma, K.V.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제3권1호
    • /
    • pp.11-19
    • /
    • 2010
  • The performance of the crossover system of a centrifugal compressor stage consisting of static components of $180^{\circ}$ U-bend, return channel vanes and exit ducting with a $90^{\circ}$ bend is investigated. This study is confined to the assessment of performance of the crossover system by varying the shape of the return channel vanes. For this purpose two different types of Return Channel Vanes (RCV1 and RCV2) were experimentally investigated. The performance of the crossover system is discussed in terms of total pressure loss coefficient, static pressure recovery coefficient and vane surface pressure distribution. The experimentation was carried out on a test setup in which static swirl vanes were used to simulate the flow at the exit of an actual centrifugal compressor impeller with a design flow coefficient of 0.053. The swirl vanes are connected to a mechanism with which the flow angle at the inlet of U-bend could be altered. The measurements were taken at five different operating conditions varying from 70% to 120% of design flow rate. On an overall assessment RCV1 is found to give better performance in comparison to RCV2 for different U-bend inlet flow angles. The performance of RCV2 was verified using numerical studies with the help of a CFD Code. Three dimensional sector models were used for simulating the flow through the crossover system. The turbulence was predicted with standard k-$\varepsilon$, 2-equation model. The iso-Mach contour plots on different planes and development of secondary flows were visualized through this study.

The Numerical Simulation of Unsteady Flow in a Mixed flow Pump Guide Vane

  • Li, Yi-Bin;Li, Ren-Nian;Wang, Xiu-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • 제6권4호
    • /
    • pp.200-205
    • /
    • 2013
  • In order to investigate the characteristics of unsteady flow in a mixed flow pump guide vane under the small flow conditions, several indicator points in a mixed flow pump guide vane was set, the three-dimensional unsteady turbulence numerical value of the mixed flow pump which is in the whole flow field will be calculated by means of the large eddy simulation (LES), sub-grid scale model and sliding mesh technology. The experimental results suggest that the large eddy simulation can estimate the positive slope characteristic of head & capacity curve. And the calculation results show that the pressure fluctuation coefficients of the middle section in guide vane inlet will decrease firstly and then increase. In guide vane outlet, the pressure fluctuation coefficients of section will be approximately axially symmetrical distribution. The pressure fluctuation minimum of section in guide vane inlet is above the middle location of the guide vane suction surface, and the pressure fluctuation minimum of section in which located the middle and outlet of guide vane. When it is under the small flow operating condition, the eddy scale of guide vane is larger, and the pressure fluctuation of the channel in guide vane being cyclical fluctuations obviously which leads to the area of eddy expanding to the whole channel from the suction side. The middle of the guide vane suction surface of the minimum amplitude pressure fluctuation to which the vortex core of eddy scale whose direction of fluid's rotation is the same to impeller in the guide vane adhere.

스플리터 형상최적화에 의한 양흡입 원심블로어 성능개선 (Performance Enhancement of Dual-Inlet Centrifugal Blower by Optimal Design of Splitter)

  • 이종성;장춘만
    • 대한기계학회논문집B
    • /
    • 제38권12호
    • /
    • pp.1065-1072
    • /
    • 2014
  • 본 연구에서는 양흡입 원심블로어의 성능향상을 위하여 임펠러 스플리터의 형상 최적화 연구를 수행하였다. 두 개의 스플리터 형상 설계 변수(스플리터 코드 및 피치)를 선정하여 블로어 성능 및 내부 유동장 특성을 평가하였다. 수치해석에 의한 블로어 성능은 설계유량 조건에서 실험결과와 최대 4 % 이내로 잘 일치하였다. 스플리터 형상 최적화를 통하여 설계조건에서의 블로어 효율 및 압력은 기준 블로어 보다 3.65 % 및 1.14 % 각각 향상되었다. 스플리터 최적설계로 임펠러 날개 부압면의 유동박리를 억제시켜 익간 저속 유동에 의한 압력손실을 줄임으로써 블로어 전체의 성능이 향상되었다. 익간 내부유동 균일화는 임펠러 출구속도 분포에도 영향을 주어 볼류트케이싱 출구압력도 향상되었다.

육상 시추용 머드탱크의 교반성능에 대한 수치해석적 연구 (Numerical Study of Agitation Performance in the Mud Tank of On-shore Drilling)

  • 황종덕;구학근
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.617-626
    • /
    • 2020
  • The drilling mud is essentially used in oil and gas development. There are several roles of using the drilling mud, such as cleaning the bottomhole, cooling and lubricating the drill bit and string, transporting the cuttings to the surface, keeping and adjusting the wellbore pressure, and preventing the collapse of the wellbore. The fragments from rocks and micro-sized bubbles generated by the high pressure are mixed in the drilling mud. The systems to separate those mixtures and to keep the uniformly maintained quality of drilling mud are required. In this study, the simulation is conducted to verify the performance of the mud tank's agitation capacity. The primary role of the mud tank is the mixing of mud at the surface with controlling the mud condition. The container type is chosen as a mud tank pursuing efficient transport and better management of equipment. The single- and two-phase simulations about the agitation in the mud tank are performed to analyze and identify the inner flow behavior. The convergence of results is obtained for the vertical- and axis-direction velocity vector fields based on the grid-dependency tests. The mixing time analysis depending on the multiphase flow conditions indicates that the utilization of a two-stepped impeller with a smaller size provides less time for mixing. This study's results are expected to be utilized as the preliminary data to develop the mixing and integrating equipment of the onshore drilling mud system.

와류저감기능이 적용된 수중펌프에 관한 수치적 연구 (Numerical Study on Submersible Pumps with a Vortex Reduction Function)

  • 안덕인;김홍건
    • 한국기계가공학회지
    • /
    • 제18권10호
    • /
    • pp.83-92
    • /
    • 2019
  • A pump is considered to be submersible when a motor and a pump are integrated and operate while submerged in water. Submersible pumps mainly function as rejection pumps to prevent foods in densely populated areas, as cold water circulation pumps in large power plants, as pumps to supply irrigation water, as drainage pumps to prevent flooding of agricultural lands, as water supply intake pumps, and as inflow pumps for sewage treatment. The flow in such turbomachines (submersible pumps) inevitably involves various eddy currents. Since it is almost impossible to accurately grasp the complex three-dimensional flow structure and characteristics of a rotating turbomachine through actual testing, three-dimensional numerical analysis using computational fluid dynamics techniques measuring the flow field, velocity, and the pressure can be accurately predicted. In this study, the shape of the impeller was developed to reduce vibration and noise. This was done by increasing the efficiency of the existing submersible pump and reducing turbulence. In order to evaluate the pump's efficiency and turbulence reduction, we tried to analyze the flow using ANSYS Fluent V15.0, a commercial finite element analysis program. The results show that the efficiency of the pump was improved by 4.24% and the Reynolds number was reduced by 15.6%. The performance of a developed pump with reduced turbulence, vibration, and noise was confirmed.

캐비테이션 환경에서의 액체로켓엔진용 산화제펌프의 고주파 신호 분석 (High Frequency Signal Analysis of LOx Pump for Liquid Rocket Engine under Cavitating Condition)

  • 김대진;강병윤;최창호;배준환
    • 한국추진공학회지
    • /
    • 제22권4호
    • /
    • pp.61-67
    • /
    • 2018
  • 액체로켓엔진용 산화제펌프의 캐비테이션 시험 중 입출구 배관과 펌프 케이싱에서 계측된 고주파 신호를 분석하였다. 각각의 데이터의 RMS 값을 캐비테이션 수에 따라 표현하였다. 또한 회전수 동기 주파수와 날개 개수 성분, 캐비테이션 불안정성 주파수의 크기를 검토하였다. 입출구 배관의 압력섭동은 캐비테이션 불안정성의 영향을 받았다. 출구 배관의 신호에서는 인듀서 날개 주파수인 3x 성분이 탁월하였다. 이러한 현상은 임펠러의 날개 개수가 인듀서의 날개 개수의 배수인 것과 관계가 있는 것으로 추정된다. 케이싱에 부착된 가속도계에서도 캐비테이션 불안정성 주파수가 확인되었다.