• Title/Summary/Keyword: Impeller

Search Result 1,003, Processing Time 0.037 seconds

An Experimental Study of Flow Field in a Torque Converter (토크 컨버터 내부 유동장의 실험적 연구)

  • Yoo, S.C.
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2010
  • The flow field measurements were conducted on the planes between impeller blades, and the gap between the impeller and turbine blades under speed ratio of 0.4. The study showed that high velocity regions move from locations near the suction surface of the impeller to the pressure blade, shroud corner as flow progresses from the mid-chord of impeller passage to exit and out into the gap region. Planes 3 through 5 also showed flow reversal occurring in the area near the shell surface and progress far into the impeller passage from the impeller passage exit, near shell surface. This affected the converter efficiency negatively. This study would aid in the construction of higher accuracy CFD models of this complex turbomachinery device.

Experimental Study on Flows within an Unshrouded Centrifugal Impeller Passage(I)-At the Shockless Condition- (개방형 원심회전차의 내부유동장에 관한 실험적 연구(1)-무충돌 유입조건에서-)

  • 김성원;조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2261-2270
    • /
    • 1995
  • Flow patterns were measured in an unshrouded centrifugal impeller. The flow rate in measurements was fixed at the value corresponding to a nearly zero incidence at the blade inlet. By using a single slanted hot-wire probe and a Kiel probe mounted on the impeller hub disk, the 3-D relative velocities and the rotary stagnation pressures were measured in seven circumferential planes from the inlet to the outlet of the impeller rotating at 700rpm, which diameter is 0.39 meter, and the static pressures and the slip factor at the impeller outlet were calculated from the measured values. From the measured data, the primary/secondary flows, the leakage flows, the wake-jet flows, static pressure distribution on blade surfaces and the wake production mechanism in the impeller passage were investigated.

The Development of Exclusive CAD/CAM System for Impeller Blades Formed by Ruled Surface I(A Study on the Modeling) (Ruled Surface로 형성된 임펠러 블레이드 전용 CAD/CAM 시스템 개발 I (모델링에 관한 연구))

  • ;;;;;;Yu-Ge Dong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.71-77
    • /
    • 2001
  • We have developed the exclusive CAD/CAM system for the machining of impeller blades. This study is about the mod-eling method for the effective machining of impeller blades farmed by ruled surface. As the impeller is consisted of boss part and blade part, the boss is modeled by rotational surface of hub curve on z-axis and the blade is described by ruled- surfaces between hub curve and shroud curve. This modeling process can be carried out on the software developed in this study. And, the developed software can describe the impeller as a solid model through interface with Solid-Works soul- ware. The developed software containing the interface method proposed in this study was very effective fur impeller modeling.

  • PDF

Numerical Investigation of Secondary Flow in 3 Pump Stages: Centrifugal Multistage/Mixed-flow Stage/ Axial-flow Stage (원심형, 사류형, 축류형 펌프단에서 살펴본 이차유동의 수치적 고찰)

  • Oh, Justin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.359-364
    • /
    • 2005
  • Centrifugal pump shows the strongest secondary flow. Wake is formed near pressure surface close to hub at impeller exit for centrifugal pump impeller. Pressure gradient drives secondary flow in the inducer region, while in the remaining region the following sources drive together: > Pressure gradient > Coriolis force Low-momentum fluid near suction surface hub moves toward pressure surface hub in mixed-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow in axial-flow pump impeller

  • PDF

Numerical Studies on the Inducer/Impeller Interaction of a Liquid Rocket Engine Turbopump System (액체로켓용 터보펌프 인듀서/임펠러 상호작용에 대한 연구)

  • Choi, Chang-Ho;Cha, Bong Jun;Yang, Soo Seok
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.33-40
    • /
    • 2002
  • The hydraulic performance analysis of a pump system composed of an inducer and impeller for the application on turbopumps has been performed using three-dimensional Wavier-Stokes equations. A simple mixing-plane method and a full interaction method are used to simulate inducer/impeller interactions. The computations adopting two methods show almost similar results due to the weak interaction between the inducer and impeller since the inducer outlet blade angle is rather small. But, because the inducer and the impeller are closely spaced near the shroud region at the interface, flow angles at the impeller inlet show different results between two methods. Thus, the full interaction method predicted about $2\%$ higher pump performance than the mixing-plane method. And the effects of prewhirl at the impeller inlet are also investigated. As the inlet flow angle is increased, the head rise and the efficiency are decreased. The computational results are compared with experimental ones. The computational results at the design point show good agreements with experimental data. But the computation was found to under-predict the head rise at high mass flow rates compared to the experiment, further study must be followed in terms of the computation and experiment.

  • PDF

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

Air-Water Two-Phase Flow Performances of Centrifugal Pump with Movable Bladed Impeller and Effects of Installing Diffuser Vanes

  • Sato, Shinji;Furukawa, Akinori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.245-252
    • /
    • 2010
  • It's known that pump head of centrifugal impeller with lager blade outlet angle is kept higher in air-water two phase flow condition, though the efficiency in water single phase flow condition is inferior. In the present study, a centrifugal impeller with variable blade outlet angles, that has higher efficiencies in both water single phase flow and air-water two phase flow conditions, is proposed. And the performances of the centrifugal impeller with variable blade outlet angles were experimentally investigated in both flow conditions of single and two-phase. In addition, effects of installing diffuser vanes on the performances of centrifugal pump with movable bladed impeller were also examined. The results are as follows: (1) The movable bladed impeller that proposed in this study is effective for higher efficiency in both water single phase and air-water two phase flow conditions. (2) When diffuser vanes are installed, the efficiency of movable bladed impeller decreases particularly at large water flow rate in water single-phase flow condition; (3) The performances of movable bladed impeller are improved by installing of diffuser vanes in air-water two-phase flow condition at relatively small water rate. The improvement by installing of diffuser vanes however disappears at large water flow rate.

Characteristics of Cavitating Flow in Turbopump Inducer/Impeller (인듀서와 임펠러가 결합된 터보펌프에서의 캐비테이션 유동 특성)

  • Kim, Changhyun;Choi, Chang-Ho;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.21-28
    • /
    • 2014
  • Propellent should be pressurized inside the turbopump to gain high thrust in a projectile. Turbopump is composed of an inducer, which prevents impeller performance deterioration, and an impeller. Several types of cavitation occur inside the inducer, numerous experiments and CFD simulations are conducted. Though, an inducer takes only small portion of total head of the pump and the following impeller determines whole turbopump performance. In addition, low inlet pressure makes the flow to be cavitated not only at the inducer, but also at the impeller in real cases. Therefore, flow through an inducer and an impeller should considered simultaneously. In this study, LOX pump composed of an inducer and an impeller is analyzed by using commercial CFD code ANSYS CFX 13.0. Non-cavitating flow with high inlet pressure and cavitating flow with low inlet pressure are both simulated and head, suction performances are shown. Evolution of the flow and the cavitation by reducing cavitation number and effect of cavitation on pump performance are studied.

Numerical Analysis on Changes in Flowrate of Draft Water and Power by Changing Design Parameters of a Long-Distance Water Circulation (저층수 흡입식 광역 순환장치의 설계변수에 따른 배출량 및 소비동력 변화 특성에 대한 수치 해석 연구)

  • Song, Dong-Keun;Hong, Won-Seok;Kim, Young-Cheol;Park, Myong-Ha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • A draft tube which has impeller to elevate bottom water and spread it over surface of lake water, induces convective circulation of lake water, a Long-Distance Circulation (LDC). Circulation of lake water make stratified water mixed and enhance DO (Dissolved Oxygen) of bottom water. Circulation rate of water is determined by draft rate of the tube, which is dependent on design parameters of the draft tube system, i. e. dimension of impeller and diffuser, inclined angle of impeller, impeller shape, and rotational speed. In this study, change in draft rate and power consumption of circulation equipment was investigated numerically with changing impeller dimension, angle and rotational speed. It was found that flowrate of draft water was increased as the dimensions of draft tube and impeller, and rotational speed and inclined angle of impeller increased. The power consumption was also elevated with increasing parameter values, and final selection of parameter values was made to satisfy target flowrates and power consumption.

Optimum design and performance of marine sea water pump with impeller using CFRP (CFRP 임펠러를 사용한 선박용 해수펌프의 최적설계와 성능특성)

  • Jeong, Seon Yong;Rhi, Seok Ho;Seo, Hyoung Seock;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7878-7884
    • /
    • 2015
  • Marine sea water pump with impeller using carbon fiber block was developed to prevent the impeller corrosion by the salinity. A numerical analysis was carried out in order to optimize the impeller and volute design for marine sea water pump and to investigate the sensitivity of the related parameters(impeller thickness, surface roughness) using CFD commercial code. The impeller thickness is limited because of the weight. Since the impeller using the carbon fiber lights, the thickness which has a maximum efficiency can be used. The results show that the surface roughness leads to an 7% reduction in pump efficiency.