• Title/Summary/Keyword: Impedance tube

Search Result 139, Processing Time 0.024 seconds

A Study on the Sound Absorbing Performance of Parallel Perforated Plate Systems (병렬 다공판 시스템의 흡음성능에 관한 연구)

  • Hur, Sung-Chun;Lim, Jung-Bin;Ro, Sing-Nam;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.902-907
    • /
    • 2002
  • An equivalent electroacoustic circuit approach of estimating the sound absorption coefficient for parallel perforated plate system is proposed. The proposed approach is validated by comparing the calculated absorption coefficients of a parallel single layer perforated plate system with the values measured by the two-microphone impedance tube method for various porosity and the number of perforated plate. The sound absorbing performances of parallel and series perforated plate systems are compared and discussed from a standpoint of frequency bandwidth with sound absorption. The proposed approach is further extended to the parallel double layer perforated plate system.

  • PDF

On the Transmission Loss Measurement System (전달손실계수 측정 시스템에 대하여)

  • Ryu, Yun-Seon;Kim, Yoon-Seok;Callec, Philippe
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.166-171
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system using 4-microphone impedance tube is proposed, based on the idea calculating the full transfer matrix of the acoustical sample to test. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

A Study on the Sound Absorption of Multiple Layer Perforated Plate Systems Combined with Porous Absorbing Materials (다공성 흡음재가 조합된 다중 다공판 시스템의 흡음성능에 관한 연구)

  • Heo, Sung-Wook;Kim, Wook;Lee, Dong-Hoon;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.896-901
    • /
    • 2002
  • The sound absorption coefficients for multiple layer perforated plate systems containing several compartments with airspaces and porous absorbing materials are estimated using the transfer matrix method developed in the previous paper. The absorption coefficients from transfer matrix method agree well with the values measured by the two-microphone impedance tube method for various combinations of perforated plates, airspaces or porous materials. Based on these results, a guidance for the design of multiple layer perforated plate systems combined with airspaces and porous absorbing materials is discussed in detail.

  • PDF

A Study on the Sound Absorption of Multiple Layer Perforated Plate Systems Combined with Porous absorbing Materials (다공성 흡음재가 조합된 다중 다공판 시스템의 흡음성능에 관한 연구)

  • Heo, Sung-Wook;Lee, Dong-Hoon;Kim, Wook;Kwon, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.388.1-388
    • /
    • 2002
  • The sound absorption coefficients for multiple layer perforated plate systems containing several companments with airspaces and porous absorbing materials are estimated using the transfer matrix method developed in the previous paper. The absorption coefficients from transfer matrix method agree well with the values measured by the two-microphone impedance tube method fur various combinations of perforated Plates, airspaces or porous materials. (omitted)

  • PDF

A Study on the Sound Absorbing Performance of Parallel Perforated Plate Systems (병렬 다공판 시스템의 흡음성능에 관한 연구)

  • Hur, Sung-Chun;Im, Jung-Bin;Lee, Dong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.388.2-388
    • /
    • 2002
  • An equivalent electroacoustic circuit approach of estimating the sound absorption coefficient for parallel perforated plate system is proposed. The proposed approach is validated by comparing the calculated absorption coefficients of a parallel single layer perforated plate system with the values measured by the two-microphone impedance tube method for various porosity and cavity depth. (omitted)

  • PDF

On the Transmission Loss Measurement System (전달손실계수 측정시스템에 대하여)

  • Yunseon RYU;Yoon-Seok KIM;Philippe CALLEC
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.323.1-323
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system usiong 4-microphone impedance tube is proposed, based on the idea calculating the full transger matrix of the acoustical sample to test. The theoretical backgroung and measurement system are introduced, and finally the measurement results are verified.

  • PDF

Interior Noise Reduction of Enclosure Using Predicted Characteristics of Absorber (흡음재의 음향특성 예측에 의한 밀폐계의 내부 소음저감)

  • Lee Ghi-Youn;Sim Hyoun-Jin;Lee Jung-Yoon;Oh Jae-Eung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.60-66
    • /
    • 2006
  • For the purpose of finding out the sound field characteristics in a rectangular cavity, analytical and experimental studies are performed with white noise input. Two-microphone impedance tube method is used to measure the impedances of foamed aluminum. Foamed aluminum is well known metallic porous material which has excellent properties of light weight and high absorbing performance. And predicted impedances of foamed aluminum are compared with measured impedances. The predicted acoustical parameters are applied to the theoretical analysis to predict sound pressure field in the cavity. The measured sound absorption effects are compared with the predicted values for both cases with and without foamed aluminum lining in the cavity of the rectangular enclosure.

A New Estimation Model of Predicting the Sound Absorption Performance for Multiple Perforated Plate Systems (다중 다공판 시스템의 흡음성능 예측을 위한 계산모델 개발)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.877-882
    • /
    • 2002
  • A new estimation model of predicting the sound absorption performance for multiple perforated plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method far various porosity and cavity depth. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients generally agree well with the measured values.

  • PDF

A Study on the Sound Absorptive Characteristics and Performance of Parallel Perforated Plate Systems (병렬 다공판 시스템의 흡음특성과 성능에 관한 연구)

  • Hong, Byung-Kuk;Song, Hwa-Young;Seo, Seong-Won;Lee, Dong-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1003-1008
    • /
    • 2005
  • The acoustic absorption of a multiple layer perforated plate system is very good near the resonance frequency region, while it has been regarded as a demerit that its frequency bandwidth is considerably narrow. In order to overcome such a demerit, the parallel perforated plates with different porosities are proposed. The sound absorption of such system composed of a parallel perforated plate is calculated by an equivalent electroatoustic circuit approach and validated by comparing the calculated absorption coefficients with those measured by the two-microphone impedance tube method. The sound absorptive characteristics and performance of parallel perforated plate systems are discussed from a standpoint of frequency bandwidth related with sound absorption.

Estimation of the Sound Absorption Performance for Multiple Layer Perforated Plate Systems by Transfer Matrix Method (전달행렬법을 이용한 다중 다공판 시스템의 흡음성능 예측)

  • 이동훈;허성춘;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.709-716
    • /
    • 2002
  • A practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. The proposed method was validated by comparing the calculated absorption coefficients of a single layer perforated plate with the values measured by the two-microphone impedance tube method for various porosity and spacing of the perforated plate. The developed transfer matrix method was further applied to estimate the multiple layer perforated plates and it is shown that the estimated absorption coefficients agree well with the measured values.