• Title/Summary/Keyword: Impedance modeling

Search Result 239, Processing Time 0.022 seconds

Analysis of the Frequency Dependent Characteristics of Ground Impedance of a Ground Rod (봉상접지전극의 접지임피던스의 주파수의존성의 분석)

  • 이복희;엄주홍
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.8
    • /
    • pp.426-432
    • /
    • 2004
  • This paper presents a systematic approach of measurement, modeling and analysis of grounding system impedance in the field of lightning protection system and intelligent power equipments. The measurement and analysis system of ground impedance is based on a computer aided technique. The magnitude and phase of ground impedance were determined by the novel measurement and analysis using the revised fall-of-potential method. The ground impedances of the ground rod of 50 m long are considerably dependent on the frequency. The ground impedance is mainly resistive in the frequency range of 3-20 kHz. At higher frequencies, the reactive components of the ground impedances are no longer negligible and the inductance of the ground rod was found to be the core factor deciding the ground impedance. Although the steady-state ground resistance of the ground rod of 50 m was less than that of the ground rod of 10 m, the ground impedances of the ground rod of 50 m over the frequency range of more than 60 kHz were much greater than those of the ground rod of 10 m. Furthermore, the equivalent circuit model based on the measured data was proposed. and the calculated results were in approximately agreement with the measured data.

Theoretical analysis and measurement of Ground impedance of Ground rods (봉상전극 접지임피던스의 측정과 이론적 분석)

  • Lee, Bok-Hee;Lee, Tae-Hyung;Lee, Su-Bong;Eom, Ju-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1876-1878
    • /
    • 2004
  • A systematic approach of measurement, modeling and analysis of grounding system impedance is presented. The measurement and analysis system of ground impedance is based on a computer aided technique. The ground impedances of the ground rod are considerably dependent on the frequency. The ground impedance is mainly resistive in the frequency range of 3-20 kHz. At higher frequencies, the reactive components of the ground impedances are no longer negligible and the inductance of the ground rod was found to be the core factor deciding the ground impedance. As a consequence, the equivalent circuit model based on the measured data was proposed, and the calculated results were in approximately agreement with the measured data.

  • PDF

Application of Impedance Spectroscopy to Cement-Based Materials: Hydration of Calcium Phosphate Bone Cements

  • Kim, Sung-Moon;Hwang, Jin-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.3 s.286
    • /
    • pp.156-161
    • /
    • 2006
  • Impedance spectroscopy was applied to the initial hydration of calcium phosphate bone cements in order to investigate the electrical/dielectric properties. Hydration or equivalently setting was monitored as a function of the amount of water and initial powder characteristics. Higher amounts of water produced more open microstructures, leading to higher conductivity and enhanced dielectric constant. The effects of the initial characteristics in the powder were investigated using bone cement powder prepared with and without granulation. Granulated powder exhibited a significant change in resistance and produced a higher dielectric constant than those of conventional powder. Through a simplified modeling, the effects of thickness in reaction products and pore sizes were estimated by the frequency-dependent impedance measurements. Furthermore, impedance spectroscopy was proven to be a highly reliable tool for evaluating the continuous change in pore structure occurring in calcium phosphate bone cements.

Analysis of Ground Impedance of a Ground Rod Using Circuit Models (회로모델을 이용한 봉상전극 접지임피던스의 분석)

  • Lee, Bok-Hee;Lee, Tae-Hyung;Eom, Ju-Hong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.95-99
    • /
    • 2004
  • A systematic approach of measurement, modeling and analysis of grounding system impedance in the field of lightning protection systems is presented. The measurement and analysis of ground impedance are based on a computer aided technique. The magnitude and phase of ground impedance were measured and analyzed by the modified fall-of-potential method and the proposed computer program algerian using the waveforms of the test current and potential rise. The theoretical analysis of ground impedance were performed with the equivalent circuit models, and the theoretical results were compared with the measured data.

  • PDF

A Study on the Sequence Impedance Modeling of Underground Transmission Systems (지중송전선로의 대칭분 임피던스 모델링에 관한 연구)

  • Hwang, Young-Rok;Kim, Kyung-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.60-67
    • /
    • 2014
  • Power system fault analysis is commonly based on well-known symmetrical component method, which describes power system elements by positive, negative and zero sequence impedance. The majority of fault in transmission lines is unbalanced fault, such as line-to-ground faults, so that both positive and zero sequence impedance is required for fault analysis. When unbalanced fault occurs, zero sequence current flows through earth and ground wires in overhead transmission systems and through cable sheaths and earth in underground transmission systems. Since zero sequence current distribution between cable sheath and earth is dependent on both sheath bondings and grounding configurations, care must be taken to calculate zero sequence impedance of underground cable transmission lines. In this paper, EMTP-based sequence impedance calculation method was described and applied to 345kV cable transmission systems. Calculation results showed that detailed circuit analysis is desirable to avoid possible errors of sequence impedance calculation resulted from various configuration of cable sheath bonding and grounding in underground cable transmission systems.

Modeling and Experiment of 50kW Diesel Generator in Grid-connected Mode (50kW 계통연계형 디젤발전기의 모델링 및 실험)

  • Lee, Wujong;Lee, Hak Ju;Chag, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1347-1353
    • /
    • 2014
  • This paper researches a modeling and experiment of 50kW diesel generator in grid-connected mode. The output of diesel generator can be calculated by the phase difference between voltage and current as well as the diesel generator parameter such as mutual impedance, field current and rotor angle. Considering the different d-q frame impedance, the output of diesel generator is analyzed for equation and verified by simulation. The diesel generator modeled by considering the time delay for actuator, diesel engine and exciter. The controller of diesel generator is divided into governor and exciter. The governor consists of speed controller and active power controller, where speed controller maintains frequency as 60Hz and active power tracks active power reference. On the other hand, the exciter consists of voltage controller and reactive power controller, where voltage controller controls $380V_{LL}$ and reactive power is controlled as zero. When the active power reference is changed as 0.1pu in the grid connected mode, the active power takes 10 seconds to reach the steady state and the reactive power is maintains as zero. The 50kW diesel generator is tested and experiment results are well matched with the simulation results.

Modelling Method for Removing Measurement Uncertainty in Chip Impedance Characterization of UHF RFID Tag IC (UHF RFID 태그 칩의 임피던스 산출 불확실성 제거를 위한 모델링 방법)

  • Yang, Jeenmo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1228-1235
    • /
    • 2014
  • Input impedance of UHF RFID tag chip is needed to design a tag. In determining the chip impedance, direct measurement method is adopted commonly. In this paper, problems generated from fixtures that interface between tag chip and coaxial-oriented measurement instrument are investigated and the result of the problems is shown, when the direct measurement method is applied. As an alternative to the method, a modeling method is proposed and its validity and accuracy are shown.

Modeling of Impedance Characteristics of Grounding Electrode for Distribution Line Pole (배전전주의 봉상 접지전극 형태별 임피던스 특성의 모델링)

  • Shim, Keon-Bo;Kim, Kyung-Chul;Lee, Hyung-Soo;Park, Jae-Duck;Choi, Jong-Kee;Park, Sang-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.694-696
    • /
    • 2005
  • Although DC ground resistance is a good index of grounding performance for grounding electrodes, it does not reflect the grounding performance during transient state. Besides, impulse ground impedance, which is defined by a ratio of the peak value of transient ground potential rise to the peak value of impulse current, cannot be an absolute index due to its dependence on impulse current shape. In this paper, ground impedance characteristics of ground electrodes has been measured in frequency domain ranging from 1 Hz to hundreds of kHz. Equivalent circuit models and transfer function models of the ground rod have been identified from the measured values of ground impedance in frequency domain.

  • PDF

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY

  • Kwon, Oh-In;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.519-541
    • /
    • 2001
  • Magnetic Resonance Electrical Impedance Tomography(MREIT) is a new medical imaging technique for the cross-sectional conductivity distribution of a human body using both EIT(Electrical Impedance Tomography) and MRI(Magnetic Resonance Imaging) system. MREIT system was designed to enhance EIT imaging system which has inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. MREIT utilizes a recent CDI (Current Density Imaging) technique of measuring the internal current density by means of MRI technique. In this paper, a mathematical modeling for MREIT and image reconstruction method called the alternating J-substitution algorithm are presented. Computer simulations show that the alternating J-substitution algorithm provides accurate high-resolution conductivity images.

  • PDF

Impedance-based health monitoring and mechanical testing of structures

  • Palomino, Lizeth Vargas;de Moura, Jose Dos Reis Vieira Jr.;Tsuruta, Karina Mayumi;Rade, Domingos Alves;Steffen, Valder Jr.
    • Smart Structures and Systems
    • /
    • v.7 no.1
    • /
    • pp.15-25
    • /
    • 2011
  • The mechanical properties obtained from mechanical tests, such as tensile, buckling, impact and fatigue tests, are largely applied to several materials and are used today for preliminary studies for the investigation of a desired element in a structure and prediction of its behavior in use. This contribution focus on two widely used different tests: tensile and fatigue tests. Small PZT (Lead Titanate Zirconate) patches are bonded on the surface of test samples for impedance-based health monitoring purposes. Together with these two tests, the electromechanical impedance technique was performed by using aluminum test samples similar to those used in the aeronautical industry. The results obtained both from tensile and fatigue tests were compared with the impedance signatures. Finally, statistical meta-models were built to investigate the possibility of determining the state of the structure from the impedance signatures.