• 제목/요약/키워드: Impedance Control

검색결과 782건 처리시간 0.023초

IEC60479 인체 임피던스 모델에 근거한 직류누설전류의 특성 및 검출 알고리즘 (Detection Algorithm and Characteristics on DC Residual Current based on Analysis of IEC60479 Impedance Model for Human Body)

  • 김용중;이진성;김효성
    • 전력전자학회논문지
    • /
    • 제23권5호
    • /
    • pp.305-312
    • /
    • 2018
  • DC distribution systems has recently taken the spotlight. Concerns over human safety and stability facility are raised in DC distribution systems. Std. IEC 60479 provides basic guidance on "the effects of shock current on human beings and livestock" for use in the establishment of electrical safety requirements and suggests an electrical impedance of the human body. This study analyzes impedance spectrums based on the electrical equivalent impedance circuit for the human body; human body impedances measured by experiments are analyzed below the fundamental frequency (60 Hz). The analysis shows that the equivalent impedance circuit for the human body should be modified at least in low-frequency range below the fundamental frequency (60 Hz). The DC residual current detection method that can classify electric shock accidents of humans and electric leakages of facilities is proposed by applying the analysis result. The detection method is verified by experiments on livestock.

Impedance Matching Based Control for the Resonance Damping of Microgrids with Multiple Grid Connected Converters

  • Tan, Shulong;Geng, Hua;Yang, Geng
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2338-2349
    • /
    • 2016
  • This paper presents an impedance-matching-based control scheme for the harmonic resonance damping of multiple grid-connected-converters (GCCs) with LCL filters. As indicated in this paper, harmonic resonance occurs if a GCC possesses an output impedance that is not matched with the rest of the network in some specific frequency bands. It is also revealed that the resonance frequency is associated with the number of GCCs, the grid impedance and even the capacitive loads. By controlling the grid-side current instead of the converter-side current, the critical LCL filter is restricted as an internal component. Thus, the closed-loop output impedance of the GCC within the filter can be configured. The proposed scheme actively regulates the output impedance of the GCC to match the impedance of the external network, based on the detected resonance frequency. As a result, the resonance risk of multiple GCCs can be avoided, which is beneficial for the plug-and-play property of the GCCs in microgrids. Simulation and experimental results validate the effectiveness of the proposed method.

2족 보행 로봇의 보행 안정성 향상을 위한 ZPM보상 및 임피던스 제어 (ZPM Compensation and Impedance Control for Improving Walking Stability of Biped Robots)

  • 정호암;박종현
    • 대한기계학회논문집A
    • /
    • 제24권4호
    • /
    • pp.1007-1015
    • /
    • 2000
  • This paper proposes an adaptive trajectory generation strategy of using on-line ZMP information and an impedance control method for biped robots. Since robots experience various disturbances during their locomotion, their walking mechanism should have the robustness against those disturbances, which requires an on-line adaptation capability. In this context, an on-line trajectory planner is proposed to compensate the required moment for recovering stability. The ZMP equation and sensed ZMP information are used in this trajectory generation strategy. In order to control a biped robot to be able to walk stably, its controller should guarantee stable footing at the moment of feet contacts with the ground as well as maintaining good trajectory tracking performance. Otherwise, the stability of robot will be significantly compromised. To reduce the magnitude of an impact and guarantee a stable footing when a foot contacts with the ground, this paper. proposes to increase the damping of the leg drastically and to modify the reference trajectory of the leg. In the proposed control scheme, the constrained leg is controlled by impedance control using the impedance model with respect to the base link. Computer simulations performed with a 3-dof environment model that consists of combination of a nonlinear and linear compliant contact model show that the proposed controller performs well and that it has robustness against unknown uneven surface. Moreover, the biped robot with the proposed trajectory generator can walk even when it is pushed with a certain amount of external force.

자율 주행 이동 로봇의 슬립을 고려한 횡방향 임피던스 힘제어에 대한 연구 (Studies of Lateral Impedance Force Control for an Autonomous Mobile Robot with Slip)

  • 하천장;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.161-167
    • /
    • 2006
  • In this paper, lateral force control of a mobile robot with slip is presented. First, the bicycle model of a mobile robot is derived for the front steering. Second, impedance force control algorithm is applied to regulate contact force with environment. The desired distance is specified conservatively inside the environment to guarantee to make contact. Different stiffness of environment has been tested for force tracking task. Simulation results show that the proposed control algorithm works well to maintain desired contact force on the environment.

임피던스 제어와 적분 슬라이딩 모드 제어를 이용한 메카넘 휠 이동로봇의 강인한 궤도 추적 제어 (Robust Trajectory Tracking Control of a Mecanum Wheeled Mobile Robot Using Impedance Control and Integral Sliding Mode Control)

  • 우철민;이민욱;윤태성
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.256-264
    • /
    • 2018
  • Unlike normal wheels, the Mecanum wheel enables omni-directional movement regardless of the orientation of a mobile robot. In this paper, a robust trajectory tracking control method is developed based on the dynamic model of the Mecanum wheel mobile robot in order that the mobile robot can move along the given path in the environment with disturbance. The method is designed using the impedance control to make the mobile robot to track the path, and the integral sliding mode control for robustness to disturbance. The good performance of the proposed method is verified using the MATLAB /Simulink simulation and also through the experiment on an actual Mecanum wheel mobile robot. In both the simulation and the experimentation, we make the mobile robot move along a reference trajectory while maintaining the robot's orientation at a constant angle to see the characteristics of the Mecanum wheel.

High-Pass-Filter-Based Virtual Impedance Control for LCL-filtered Inverters Under Weak Grid

  • Wang, Jiangfeng;Xing, Yan;Zhang, Li;Hu, Haibing;Yang, Tianyu;Lu, Daorong
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1780-1790
    • /
    • 2018
  • Voltage feed-forward control (VFFC) is widely used in LCL-type grid-tied inverters due to its advantages in terms of disturbance rejection performance and fast dynamic response. However, VFFC may worsen the stability of inverters under weak grid conditions. It is revealed in this paper that a large phase-lag in the low-frequency range is introduced by VFFC, which reduces the phase margin significantly and leads to instability. To address this problem, a novel virtual-impedance-based control, where a phase-lead is introduced into the low-frequency area to compensate for the phase lag caused by VFFC, is proposed to improve system stability. The proposed control is realized with a high-pass filter, without high-order-derivative components. It features easy implementation and good noise immunity. A detailed design procedure for the virtual impedance control is presented. Both theoretical analysis and experimental results verify the effectiveness of the control proposed.

차량 집단 주행 시스템을 위한 임피던스 제어 (Impedance Control for a Vehicle Platoon System)

  • 이수영
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권6호
    • /
    • pp.295-301
    • /
    • 2001
  • In this paper, an impedance control using a serial chain of spring-damper system is proposed for a vehicle platoon. For safety of the vehicle platoon, it is required to regulated the distance between each vehicle at a preassigned value even in case of vehicle model error, or moise in the measurement signal. Since the spring-damper system is physically stable and widely used to represent the interaction with the uncertain environments, it is appropriate to the longitudinal control of the vehicle platoon. By considering the nonholonomic characteristics of the vehicle motion, the lateral control and the longitudinal control of the vehicle paltoon are unified in the proposed algorithm. Computer simulation is carried out to verify the robustness against the uncertainties such as the vehicle model error and the measurement noise.

  • PDF

Grid-friendly Characteristics Analysis and Implementation of a Single-phase Voltage-controlled Inverter

  • Zhang, Shuaitao;Zhao, Jinbin;Chen, Yang;He, Chaojie
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1278-1287
    • /
    • 2017
  • Inverters are widely used in distributed power generation and other applications. However, their lack of inertia and variable impedance may cause system instability and power transfer inaccuracy. This paper proposes a control scheme for a single phase voltage-controlled inverter with some grid-friendly characteristics. The proposed control algorithm enables the inverter to function as a voltage source with an inner output impedance in both the islanded and grid-connected modes. Virtual inertia and rotor equations are embedded in the PLL part. Thus, the frequency stability can remain. The inner output impedance can be adjusted freely, which helps to accurately decouple and transmit the output active and reactive power. The proposed inverter operates like a traditional synchronous generator. Simulations and experiments are designed and carried out to verify the proposed control strategy.

고조파 성분을 이용한 고저항 지락 사고 검출 기법에 관한 연구 (A Study on High Impedance Fault Detection Method Using Harmonic Components)

  • 유창완;심재철;임화영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1015-1017
    • /
    • 1997
  • A high impedance fault on the multi-grounded three-phase four-wire distribution system can not be detected by conventional overcurrent sensing devices. In this paper, the neural network is used to detect high impedance faults. The proposed algorithm using back - propagation neural network is demonstrated by simulation with the staged fault test data. The harmonic components of current and the phase of voltage are used as the inputs of neural network. Results of the simulation can be used as a reference for the development of a high impedance fault detector.

  • PDF