• 제목/요약/키워드: ImpactStory

검색결과 128건 처리시간 0.032초

내풍설계된 초고층 철골중심가새골조의 지진응답 해석 (Seismic Response Analysis of Wind-Designed Concentrically Braced Steel Highrise Buildings)

  • 이철호;김선웅
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 가을 학술발표회 논문집
    • /
    • pp.60-67
    • /
    • 2004
  • The designer of a tall building even in moderate and low seismic regions should, in finalizing the desist consider the probable impact of the design basis earthquake on the selected structural system. In this study, seismic response analysis was conducted to evaluate the seismic performance of concentrically braced steel highrise buildings which were designed only for governing wind loading under moderate seismicity. The main purpose of this analysis was to see if the wind design would create a system whose elastic capacity clearly exceeds the probable demand as suggested by the design basis earthquake. The strength demand-to-capacity study revealed that the wind-designed steel highrise buildings with the aspect ratio of larger than five can withstand the design basis earthquake elastically by a sufficient margin due to the system over-strength resulting from the wind-serviceability criterion. The maximum story drift demand from the design basis earthquake was just 0.25% (or half the limit of Immediate Occupancy performance level in FEMA 273)

  • PDF

Analysis of seismic mid-column pounding between low rise buildings with unequal heights

  • Jiang, Shan;Zhai, Changhai;Zhang, Chunwei;Ning, Ning
    • Earthquakes and Structures
    • /
    • 제15권4호
    • /
    • pp.395-402
    • /
    • 2018
  • Floor location of adjacent buildings may be different in terms of height elevation, and thus, the slab may hit on the columns of adjacent insufficiently separated buildings during severe ground motions. Such impacts, often referred to as mid-column pounding, can be catastrophic. Substantial pounding damage or even total collapse of structures was often observed in large amount of adjacent low rise buildings. The research on the mid-column pounding between low rise buildings is in urgency need. In present study, the responses of two adjacent low rise buildings with unequal heights and different dynamic properties have been analyzed. Parametric studies have also been conducted to assess the influence of story height difference, gap distance and input direction of ground motion on the effect of structural pounding response. Another emphasis of this study is to analyze the near-fault effect, which is important for the structures located in the near-fault area. The analysis results show that collisions exhibit significant influence on the local shear force response of the column suffering impact. Because of asymmetric configuration of systems, the structural seismic behavior is distinct by varying the incident directions of the ground motions. Results also show that near-fault earthquakes induced ground motions can cause more significant effect on the pounding responses.

Spatiotemporal Routing Analysis for Emergency Response in Indoor Space

  • Lee, Jiyeong;Kwan, Mei-Po
    • 한국측량학회지
    • /
    • 제32권6호
    • /
    • pp.637-650
    • /
    • 2014
  • Geospatial research on emergency response in multi-level micro-spatial environments (e.g., multi-story buildings) that aims at understanding and analyzing human movements at the micro level has increased considerably since 9/11. Past research has shown that reducing the time rescuers needed to reach a disaster site within a building (e.g., a particular room) can have a significant impact on evacuation and rescue outcomes in this kind of disaster situations. With the purpose developing emergency response systems that are capable of using complex real-time geospatial information to generate fast-changing scenarios, this study develops a Spatiotemporal Optimal Route Algorithm (SORA) for guiding rescuers to move quickly from various entrances of a building to the disaster site (room) within the building. It identifies the optimal route and building evacuation bottlenecks within the network in real-time emergency situations. It is integrated with a Ubiquitous Sensor Network (USN) based tracking system in order to monitor dynamic geospatial entities, including the dynamic capacities and flow rates of hallways per time period. Because of the limited scope of this study, the simulated data were used to implement the SORA and evaluate its effectiveness for performing 3D topological analysis. The study shows that capabilities to take into account detailed dynamic geospatial data about emergency situations, including changes in evacuation status over time, are essential for emergency response systems.

지붕대체형 집광집열기를 이용한 태양열 난방시스템의 동절기 성능 평가 (A Study on the Field Test of the Solar Heating System with Parabolic Solar Collectors Integrated the Roof of a Residential Building)

  • 김용기;이태원;윤광은
    • 한국태양에너지학회 논문집
    • /
    • 제27권2호
    • /
    • pp.61-69
    • /
    • 2007
  • The final energy consumption in the building sector in Korea represents almost 20% of the total energy consumption. Besides, Space heating and hot water generation in Korea are based on fossil fuels, with a serious environmental impact. Despite the popularity of simple solar domestic hot water systems, active solar space heating remains, for various reasons, marginal. And thus, the aim of this paper is to demonstrate potentialities of solar assisted space heating systems, both technically and economically. From this study found that the solar heating system with CPC solar collectors integrated the roof of a single-story residential building shares $50{\sim}55%$ of the annual heating load.

게임 '로보토미 코퍼레이션'을 통한 게임 현지화 연구: 캐릭터성을 고려한 번역을 대상으로 (A Study on Game Localization with the Game 'Lobotomy Corporation': Based on Translation Considering Characteristics)

  • 원호혁;구본혁;김형엽
    • 한국게임학회 논문지
    • /
    • 제18권3호
    • /
    • pp.87-102
    • /
    • 2018
  • 본 연구는 효과적인 게임 현지화 방법에 대한 연구로 게임 텍스트의 번역에 있어 캐릭터성이 미치는 영향력을 증명하고자 한다. 보편적으로 상호작용 스토리텔링의 구조를 가진 게임 속 캐릭터들은 게임 속에서 일어나는 이벤트의 큰 영향력을 가진다. 또한 캐릭터가 특정 문화나 상징에 기반을 둔 경우 필연적으로 스토리와 연계성이 더욱 강해진다. 본 연구는 카발라의 '세피로트의 나무'를 바탕으로 캐릭터성이 구성된 게임 '로보토미 코퍼레이션'에 등장하는 캐릭터들의 캐릭터성을 분석하고 이를 통해 효과적인 현지화를 위해 게임 번역이 나아가야 할 방향을 제시하고자 한다.

Application of tuned liquid dampers in controlling the torsional vibration of high rise buildings

  • Ross, Andrew S.;El Damatty, Ashraf A.;El Ansary, Ayman M.
    • Wind and Structures
    • /
    • 제21권5호
    • /
    • pp.537-564
    • /
    • 2015
  • Excessive motions in buildings cause occupants to become uncomfortable and nervous. This is particularly detrimental to the tenants and ultimately the owner of the building, with respect to financial considerations. Serviceability issues, such as excessive accelerations and inter-story drifts, are more prevalent today due to advancements in the structural systems, strength of materials, and design practices. These factors allow buildings to be taller, lighter, and more flexible, thereby exacerbating the impact of dynamic responses. There is a growing need for innovative and effective techniques to reduce the serviceability responses of these tall buildings. The current study considers a case study of a real building to show the effectiveness and robustness of the TLD in reducing the coupled lateral-torsional motion of this high-rise building under wind loading. Three unique multi-modal TLD systems are designed specifically to mitigate the torsional response of the building. A procedure is developed to analyze a structure-TLD system using High Frequency Force Balance (HFFB) test data from the Boundary Layer Wind Tunnel Laboratory (BLWTL) at the University of Western Ontario. The effectiveness of the unique TLD systems is investigated. In addition, a parametric study is conducted to determine the robustness of the systems in reducing the serviceability responses. Three practical parameters are varied to investigate the robustness of the TLD system: the height of water inside the tanks, the amplitude modification factor, and the structural modal frequencies.

A system model for reliability assessment of smart structural systems

  • Hassan, Maguid H.M.
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.455-468
    • /
    • 2006
  • Smart structural systems are defined as ones that demonstrate the ability to modify their characteristics and/or properties in order to respond favorably to unexpected severe loading conditions. The performance of such a task requires a set of additional components to be integrated within such systems. These components belong to three major categories, sensors, processors and actuators. It is wellknown that all structural systems entail some level of uncertainty, because of their extremely complex nature, lack of complete information, simplifications and modeling. Similarly, sensors, processors and actuators are expected to reflect a similar uncertain behavior. As it is imperative to be able to evaluate the impact of such components on the behavior of the system, it is as important to ensure, or at least evaluate, the reliability of such components. In this paper, a system model for reliability assessment of smart structural systems is outlined. The presented model is considered a necessary first step in the development of a reliability assessment algorithm for smart structural systems. The system model outlines the basic components of the system, in addition to, performance functions and inter-relations among individual components. A fault tree model is developed in order to aggregate the individual underlying component reliabilities into an overall system reliability measure. Identification of appropriate limit states for all underlying components are beyond the scope of this paper. However, it is the objective of this paper to set up the necessary framework for identifying such limit states. A sample model for a three-story single bay smart rigid frame, is developed in order to demonstrate the proposed framework.

인공지반에서 토양하중에 따른 건축구조물 골조원가의 비교연구 (A Comparative Study on the Costs of Structural Materials Based on Different Types of Soil Load on Artificial Ground)

  • 김도경;황지환
    • 한국조경학회지
    • /
    • 제29권6호
    • /
    • pp.72-81
    • /
    • 2002
  • The purpose of this study is to determine the impact of the soil load for artificial ground on a building's structural expenses. Three types of soil - 100% soil, soil mixed with 50% perlite, and 100% artificial soil - were used for this study. A one story concrete steel building specific to each soil load was designed, and then, the cost of steel and concrete used for the design was estimated. As the result of this study, the structural expenses in the case of 5:5 mixed soil can be reduced about 17% compare with 100% soil. Using artificial soil, the structural expenses can be cut about 32% compare to 100% soil and about 12% less when 5:5 mixed soil is used. However, considering total expense which includes the structural expense and soil expense, the expense of 5:5 mixed soil have an increase 25% compared with 100% soil. In the artificial soil, the total expense is 45% more expensive than 100% soil and 17% higher when 5:5 mixed soil is used because of the high unit price of artificial soil. This study expected substantial savings in structural cost as the soil-load was lightened. But, savings were significantly reduced because the unit price of the artificial soil is much more expensive than the price of the natural one. Therefore, further research on methods of reducing the unit price of the artificial soil should be conducted in order to extend green space on to artificial ground.

Classification of Characters in Movie by Correlation Analysis of Genre and Linguistic Style

  • You, Eun-Soon;Song, Jae-Won;Park, Seung-Bo
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.49-55
    • /
    • 2019
  • The character dialogue created by AI is unnatural when compared with human-made dialogue, and it can not reveal the character's personality properly in spite of remarkable development of AI. The purpose of this paper is to classify characters through the linguistic style and to investigate the relation of the specific linguistic style with the personality. We analyzed the dialogues of 92 characters selected from total 60 movies categorized four movie genres, such as romantic comedy, action, comedy and horror/thriller, using Linguistic Inquiry and Word Count (LIWC), a text analysis software. As a result, we confirmed that there is a unique language style according to genre. Especially, we could find that the emotional tone than analytical thinking are two important features to classify. They were analyzed as very important features for classification as the precision and recall is over 78% for romantic comedy and action. However, the precision and recall were 66% and 50% for comedy and horror/thriller. Their impact on classification was less than romantic comedy and action genre. The characters of romantic comedy deal with the affection between men and women using a very high value of emotional tone than analytical thinking. The characters of action genre who need rational judgment to perform mission have much greater analytical thinking than emotional tone. Additionally, in the case of comedy and horror/thriller, we analyzed that they have many kinds of characters and that characters often change their personalities in the story.

Study of User Reuse Intention for Gamified Interactive Movies upon Flow Experience

  • Han, Zhe;Lee, Hyun-Seok
    • Journal of Multimedia Information System
    • /
    • 제7권4호
    • /
    • pp.281-293
    • /
    • 2020
  • As Christine Daley suggested, "interaction-image" is considered to be typical in the age of "Cinema 3.0", which integrates the interactivity of game art and obscures the boundary between producers and customers. In this case, users are allowed to involve actively in the scene as "players" to manage the tempo of the story to some extent, it, thus, makes users pleased to watch interactive movies repeatedly for trying a diverse option to unlock more branch lines. Accordingly, this paper aims to analyze the contributory factors and effect mechanism of users' reuse intention for gamified interactive movies and offer specific concepts to improve the reuse intention from the interactive film production and operation perspectives. Upon integrating the Flow theory and Technology Acceptance Model (TAM) and separating the intrinsic and extrinsic motivations of key factors based on Stimulus-Organism-Response (S-O-R), the research builds an empirical analysis model for users' reuse intention with cognition, design, attitude emotional experience and conducts an empirical analysis on 425 pieces of valid sample data applying SPSS22 and Amos23. The results show that user satisfaction and flow experience impact users' reuse intention highly and perceived usefulness, perceived ease of use, perceived enjoyment, remote perception, interactivity, and flow experience have significant positive influence on user satisfaction experience.