• Title/Summary/Keyword: Impact vibration

Search Result 1,462, Processing Time 0.027 seconds

An Analysis of Vibration Attenuation Effect of the different type of Gloves and Drilling Mode (진동모드에 따른 각종 장갑의 방진효과 분석)

  • 황성환;이형일;이동충
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.69
    • /
    • pp.65-73
    • /
    • 2001
  • The objective of this study is to evaluate the vibration attenuation effects of the different type of gloves and drilling mode while operating a light-weighted powered hand drill. For the experimental design, five different kinds of glove(barehanded cotton partly coated anti-vibration, and open-finger vibration glove) two types of push force level(100N and 200N) and two types of drilling mode(impact and non-impulsive) were considered. Six healthy male subjects were employed to drive screws into a vertically mounted marble plate with a powered hand drill in a randomly ordered experimental conditions. The findings of this study are summarized as follows; (1) It was found that the best combination of overall BMS transmissibility was using impact drilling mode with anti-vibration glove among evaluated experimental conditions (2) The wearing open finger vibration glove in mid-frequency level and anti-vibration glove with impact drill in high-frequency were the best in the result from mean corrected transmissibility equation of ISO 10819.

  • PDF

Determining Vibration Qualification Level for the Equipment Loaded Inside a Tracked Vehicle (궤도차량 탑재장비의 진동 내구성 평가를 위한 시험수준 결정방법 연구)

  • Choi, Chang-Ha
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.123-130
    • /
    • 1995
  • The equipment composed of many complicated electronic stuffs undergoes diverse stresses caused by mechanical vibrations during its service. Thus, to ensure its proper operation in the field a simulated vibration test has to be carried out in the laboratory with the Vibration Qualification Level, the test specification, which can include the real environment. In this paper we intent to deal with method and procedure for determining the Vibration Qualification Level so as to estimate the vibration-endurance for the equipment precisely.

  • PDF

Study on the Characteristics and Development of Impact Dynamic Vibration Absorber (충격식 감쇠기를 이용한 동흡진기의 개발에 관한 연구)

  • Kim, Won-Cheol;Lee, So-Hwan;Yang, Bo-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.4
    • /
    • pp.421-431
    • /
    • 1996
  • From comparing the impact dynamic absorber with the impact damper in the auxiliary vibration system with the conventional dynamic absorber, the following conclusions are obtained as follows ; 1. Recognizing that the amplitude restraining effect of the impact dynamic absorber become resonable in a comparison of conventional one development of an improved dynamic absorber may be probable. 2. With increasing the frequency ratio, the 1st resonance peak is higher but the 2nd one gets lower. In addition, the frequency ratio is peak located at the same resonance. 3. The optimum impact clearance is smaller and the vibration constraining effect becomes better with and increase in the mass of impact ball. And it is recognizable that the optimum tuning frequency ratio and impact clearance in an accordance with the mass ratio are varied. 4. The optimum tuning condition becomes gradually lower than the case of r=1 and maximum amplitude becomes lower with an increment in the mass ratio. However, the impulse clearance is larger and the working range of restraining vibration amplitude become smaller with a decrement in the mass of impact ball.

  • PDF

Application of Time-Frequency Analysis Methods to Loose Part Impact Signal (금속파편 감시 시스템에 대한 시간-주파수 해석 적용 연구)

  • 박진호;이정한;김봉수;박기용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.361-364
    • /
    • 2003
  • The safe operation and reliable maintenance of nuclear power plants is one of the most fundamental and important tasks. It is known that a loose part such as a disengaged and drifting metal inside of reactor coolant systems might lead to a serious damage because of their impact on the components of the coolant system. In order to estimate the impact position of a loose par, three accelerometers attached to the wall of the coolant system have been used. These accelerometers measure the vibration of the coolant system induced by loose part impact. In the conventional analysis system, the low pass filtered version of the vibration data was used for the estimation of the position of a loose part. It is often difficult to identify the initial point of the impact signal by using just a low passed time signal because the impact wave is dispersed during propagation into the sensor. In this paper, the impact signal is analysed by use of various time frequency methods including the short time Fourier transform(STFT), the wavelet transform, and the Wigner-Vill distribution for finding a convenient way to identify the starting point of a impact signal and their advantages and limits are discussed.

  • PDF

Analysis of Impact Responses Considering Sensor Dynamics (센서 동역학을 고려한 충격응답해석)

  • B. J. Ryu;K. Y. Ahn;B. H. Kwon;I. S. Oh;Lee, G. S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.373.1-373
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems. Since the impact force and response are measured indirectly through the sensors, it is difficult to predict the impact force and acceleration. In this study, contact force model based on the Hertz law is proposed in order to predict the impact force correctly. (omitted)

  • PDF

Performance Analysis of Smart Impact Damper (지능형 완충기의 특성 해석)

  • ;;Y.T. Choi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.323-327
    • /
    • 2001
  • Electrorheological(ER) and magnetorheological(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. Controllable fluids such as ER and MR fluids have received considerable attention as several components of engineering devices. One of them is a smart impact damper using ER/MR fluids. Impact damper system can be used in the joint mechanism of railroad vehicle, protection equipment of elevator's drop, and launch equipment of aircraft. This paper presents the results of an analytical study of the performance of a smart impact damper to suppress vibration during impact excitation. The damping capabilities of MR impact damper for variable applied current are analyzed using Bingham model under sudden impact load.

  • PDF

Improvement In the Serviceability of Floor Slab of Remodeled Building and the Performance of Floor Impact Noise (리모델링 건축물의 바닥슬래브 사용성 및 바닥충격음 성능개선)

  • Lee, Byung-Kwon;Bae, Sang-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1243-1246
    • /
    • 2006
  • As remodeling market is growing and peoples' concern on health and well-being is getting high, there is a need to apply environmentally friendly approach to remodeling an apartment houses. But, in point of the impact noise concerned, the thickness of the concrete slab and the limited ceiling height of the remodelling houses are the main constraints to improve the impact noise performance. In order to investigate the effect of the impact noise isolation as structural treatments for the structural elements, heavy-weight impact noise and tapping noise were measured in an remodeling building. As a result, structural strengthening method by H-beam was successful to enhance the impact noise level at about 3 or 4 class by the sound classification system.

  • PDF

Characteristics of Vertical Vibration Transfer in Vertical Way according to Shear Wall Apartment Structures due to Heel-drop Impact (발 뒤꿈치 충격에 의한 전단벽식 공동주택 수직진동의 수직방향 진동전달 특성)

  • Chun, Ho-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.70-73
    • /
    • 2006
  • Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the characteristics of vertical vibration transfer in terms of the directions of transfer(upward transfer and downward transfer) on the shear wall building structures due to heel-drop impact forces. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on two shear wall building structures. The results of this study suggest that the characteristics of vertical vibration transfer are similar in terms of the directions of transfer.

  • PDF

Noise and Vibration Characteristics of Concrete Floor Structures Using Resilient Materials Driven by Standard Heavy Impact Source (완충재 유무에 따른 표준중량충격원에 의한 콘크리트 바닥 구조의 소음 및 진동 특성)

  • 송희수;전진용;서상호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.661-667
    • /
    • 2004
  • The characteristics of noise and vibration by a heavy impact source was studied. The triggering method was used for increasing the reliability and stability to measure the level of sound pressure. sound intensity and vibration acceleration. A simple finite element model and a rigid body analysis method were suggested to calculate the natural frequencies of the multi-layer floor system. The results show that the resilient materials decrease the natural frequency of the reinforced concrete slab, make a resonance with dominant driving frequency in the low frequency region, and increase the vibration and noise level. A simple finite element model and rigid body models was suggested to calculate the natural frequencies of the floor systems.

Damping Characteristics of Impact Damper (충격식 감쇠기의 감쇠특성에 관한 연구)

  • 김원철;전순기;양보석;문덕호
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.29-37
    • /
    • 1993
  • This study is concerned about the impact type damper for effectively restraining the high vibration amplitude in the resonance regions. The theoretical analysis is based on the assumption that the impacts occur twice per cycle at an equal time interval. Simple but reasonable approximations have been derived for the optimum collision clearance and maximum amplitude ratio. Using the impact dampers which is rigidly attached to the primary vibration system, we have experimented for mass ratios and restitution coefficients. The experimental results are in good agreement with theoretical results.

  • PDF