• 제목/요약/키워드: Impact vibration

검색결과 1,463건 처리시간 0.026초

피스톤슬랩에 의한 엔진 진동현상의 분석과 예측 (Analysis and Prediction of Piston-Slap Induced Vibration)

  • 권기웅;김양한
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.3045-3054
    • /
    • 1993
  • The mechanics related with piston-slap induced vibration has been studied in terms of non-dimensionalized dynamic equation of motion, various non-dimensional parameters such as non-dimensional side-thrust force and non-dimensional impact velocity throughout the numerical simulation. Experimental verification on the suggested prediction method has been also performed by using single cylinder engine which was carefully designed and manufactured to wisely control the engine parameters, especially clearance and the mass of piston. The predicted and experimentally observed vibration signature confirm that the proposed method is practically useful.

폐기물 매립지반에서 동다짐공법에 의한 진도영향에 관한 연구 (A Study on the Vibration Effect by Dynamic Compaction Method at Waste Landfill)

  • 천병식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권1호
    • /
    • pp.141-148
    • /
    • 2001
  • Dynamic compaction is the ground improvement method by applying the impact energy. This impact energy can damage to adjacent structure in urban area. Therefore, if dynamic compaction method is applied, careful attention should be payed to surrounded structures. In this study, the method was performed in waste landfill and the frequency of vibrations were measured according to each distances, drop-heights, and vibrating directions. The measured data show that particle velocity bas low frequency and it is greatest in longitudinal direction. There was little differences between Maynes suggestion and measured data. Therefore, Maynes suggestion can be adopted if the range of vibration can be predicted. Also, It was found that minimum 45m distance is needed in order to satisfy the administrative code if dynamic compaction method is applied.

  • PDF

건축물 내외부에 설치된 비상용 발전기 소음영향 평가 및 대책방안 사례연구 (A Case Study on Noise Impact Assessments and Countermeasures for Emergency Generators of the Data Center Building)

  • 윤대진;최재성;김창열;김한준
    • 한국소음진동공학회논문집
    • /
    • 제22권10호
    • /
    • pp.932-939
    • /
    • 2012
  • Recently, data centers are being established because IT and telecommunication industries are growing. The data centers have to install emergency generators to prevent unexpected shutdown of the electrical power supply. When the data centers are located in the densely populated urban area, the operating noise of the emergency generators can be a cause of people's complaints. In this case, it is necessary to establish effective countermeasure by noise & vibration specialists. To achieve this, noise reduction measure using noise measurement data and 3D noise analysis method have been employed in this study.

원환판의 접수진동 해석에 대한 실험적 연구 (Experimental Analysis of Vibration of Annular Plate in Contact with Water)

  • 한상보;곽문규;송장규;김윤환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.431-437
    • /
    • 1996
  • The natural frequencies of annular plates in contact with water were theoretically derived and its validity was checked by experiments. The experimental frequency response functions of the annular plates were obtained using the impact hammer method. Comparison of the FRF obtained using the impact hammer and the fRF using shaker attached showed that the former was better than the latter due to the mass effect and additional constraint from the instrumentation. It was found that the experimentally extracted natural frequencies of annular plates in contact with water were in good agreement with those theoretical values.

  • PDF

Application of multi-physics simulation for vibration performance of the hand after contacting the ball with the volleyball player

  • Wang, Yangping;Sun, Shuze
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.681-692
    • /
    • 2022
  • The vibrational response of the two bones in a Volleyball player's arm under ball impact is conducted. The two bones in hand, Ulna and Radius, are modeled as two cylindrical shells. The formulations associated with the shells' vibration are obtained using the energy method. Then, the results are extracted with the aid of the two-dimensional form of DQM in conjunction with Runge-Kutta. The results are validated by means of a published paper. Lastly, the role of parameters in determining vibrational frequency as well as deflection is explored through parametric studies. It was shown that the impactor speed and the time of the impact could be essential factors in determining the vibration behavior of the bones. This work can be used in the further investigation of the behavior of bones and physiological structures.

Compensation of errors caused by resonance vibration of measurement system in impact force measurement

  • Usui, Y.;Miyazawa, S.;Sawai, N.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.593-596
    • /
    • 1994
  • When a force impulse acting on a massive and plex object is measured with a dynamometer, be resonant vibration of the measurement system often leads to serious inaccuracies. A more accurate measurement is obtained when the transfer function ,of the object-dynamometer system is used to compensate for the error in the dynamometer's output signal. The natural frequency and the damping coefficient of the transfer function are estimated by analyzing the waveform of the free damped vibration period after the loading of the force has ended. The residue of the system is determined such that the compensated force spectrum becomes smooth within a neighborhood of the natural frequency. The effectiveness of this signal processing method is experimentally tested on a hammer impulse, under the assumption that the hammer's high resonant frequency accurately models the problems encountered in force impact measurement. The compensation method is used to derive a improved estimate of the hammer impulse.

  • PDF

공동주택 모델링을 통한 중량충격음 예측에 관한 연구 (The numerical analysis. of heavy weight impact noise for an apartment house)

  • 황재승;문대호;윤영배;홍건호;박홍근;홍성걸
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.527-532
    • /
    • 2008
  • In this study, numerical analysis is performed to investigate the sound radiation characteristics of an apartment house according to the type of the slab system. In order to satisfy the boundary condition of the apartment house, the whole floor is modelled with FEM model for three different structural system: wall, RC, flat slab system. From the analytical results, it Is shown that heavy weight floor impact noise of wail type slab is larger than that of the other slab systems and the noise radiated from the wall have great effect on the sound pressure level. The results also show that the vibration energy of RC or flat slab system is widely distributed over the whole slab, which is main reason that the noise induced by the slab systems is reduced in comparison with wail slab system.

  • PDF

Numerical simulations of interactions between solitary waves and elastic seawalls on rubble mound breakwaters

  • Lou, Yun-Feng;Luo, Chuan;Jin, Xian-Long
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.393-410
    • /
    • 2015
  • Two dimensional numerical models and physical models have been developed to study the highly nonlinear interactions between waves and breakwaters, but several of these models consider the effects of the structural dynamic responses and the shape of the breakwater axis on the wave pressures. In this study, a multi-material Arbitrary Lagrangian Eulerian (ALE) method is developed to simulate the nonlinear interactions between nonlinear waves and elastic seawalls on a coastal rubble mound breakwater, and is validated experimentally. In the experiment, a solitary wave is generated and used with a physical breakwater model. The wave impact is validated computationally using a breakwater - flume coupling model that replicates the physical model. The computational results, including those for the wave pressure and the water-on-deck, are in good agreement with the experimental results. A local breakwater model is used to discuss the effects of the structural dynamic response and different design parameters of the breakwater on wave loads, together with pressure distribution up the seawall. A large-scale breakwater model is used to numerically study the large-scale wave impact problem and the horizontal distribution of the wave pressures on the seawalls.

EDISON Co-rotational Plane Beam-Transient anlaysis를 이용한 Energy method방법의 충격량해석 및 타격중심 매개변수 연구

  • 김상혁;이상구;신상준
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.194-203
    • /
    • 2017
  • The center of percussion(COP) is the point of an extended massive object attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot. COP is an important concept in the field of vibration and dynamics. In vibration, COP causes reduction of vibration and in dynamics, it brings about maximum speed of an object. Many studies about COP are still in progress. However most of the researches have typically focused on the method of mathematical and numerical anlalysis. In this paper, impact analysis was proved by the mechanical energy method using EDISON co-rotational plane beam transient analysis program. The result expressed in acceleration was the relative magnitude of the impulse, which was the indicator of COP. Then, these results were compared with the reference thesis results for exact consequences. Additionally, parametric study of COP was conducted.

  • PDF

An experimental study of vibration control of wind-excited high-rise buildings using particle tuned mass dampers

  • Lu, Zheng;Wang, Dianchao;Masri, Sami F.;Lu, Xilin
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.93-115
    • /
    • 2016
  • A particle tuned mass damper (PTMD) system is the combination of a traditional tuned mass damper (TMD) and a particle damper (PD). This paper presents the results of an experimental and analytical study of the damping performance of a PTMD attached to the top of a benchmark model under wind load excitation. The length ratio of the test model is 1:200. The vibration reduction laws of the system were explored by changing some system parameters (including the particle material, total auxiliary mass ratio, the mass ratio between container and particles, the suspending length, and wind velocity). An appropriate analytical solution based on the concept of an equivalent single-unit impact damper is presented. Comparison between the experimental and analytical results shows that, with the proper use of the equivalent method, reasonably accurate estimates of the dynamic response of a primary system under wind load excitation can be obtained. The experimental and simulation results show the robustness of the new damper and indicate that the damping performance can be improved by controlling the particle density, increasing the amount of particles, and aggravating the impact of particles etc.