• Title/Summary/Keyword: Impact vibration

Search Result 1,463, Processing Time 0.026 seconds

Technology Trends on Structural Analysis Software in Aerospace Industry (항공우주산업 구조해석 소프트웨어 기술동향)

  • Lim, Jae-Hyuk;Kim, Kyung-Won;Kim, Sun-Won;Hwang, Do-Soon
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.59-67
    • /
    • 2009
  • Computer Aided Engineering(CAE) technology as well as Design(CAD) and Manufacturing(CAM) have been widely adopted in the aerospace industry in order to develop the structure of airplanes, satellites and launch vehicles. Among them, CAE softwares based on finite element methods such as NASTRAN, ABAQUS and ANSYS have gained many engineers' interest in various industries such as automobiles, civils, aircraft and spacecraft. The softwares usually consist of several modules: Static, Dynamic, Vibration, Impact etc. that make analysis specific to meet the design goals of the structure systems. Recent enhancement in the computer hardwares and numerical algorithms enables us to perform complex analysis like multi-physics, optimum design. Also, they make it possible to deal with a large scale problem easily. This paper reviews structural analysis softwares in aerospace industry and gives a summary on its recent development.

  • PDF

Development of Sound Frequency Analyser using an Ultra-Low Power MCU (초저전력 Micro Controller Unit(MCU)를 활용한 소리 주파수 분석기 개발)

  • Choi, Jae-Hoon;Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.4
    • /
    • pp.403-410
    • /
    • 2016
  • Materials made of metals have their own manifest resonant frequencies. Using this property, the quality test of products from the factory can be performed. An impact is applied to the product and the frequencies of the sound and/or vibration are measured using high-end equipments. They use a general purpose computer or a DSP(: Digital Signal Processor)-based stand-alone system which is usually too large in-size to carry and expensive to build. In this paper, we introduce a system that is developed based on a MSP430 MCU(:Micro-Controller Unit) from TI(: Texas Instruments). The ultra-low power MSP430 MCUs make it possible to make a frequency analyzer in a very small size without the need of using a large-size battery. The proposed system can be used in situations where the frequency analyzer should be carried easily with an investigator and should be built at low cost sacrificing some accuracy. We implemented the system using a launchpad supplied by TI and could confirm that the proposed system could identify with a high-accuracy the frequencies of various artificial and natural sounds.

A Ripple Rejection Inherited RPWM for VSI Working with Fluctuating DC Link Voltage

  • Jarin, T.;Subburaj, P.;Bright, Shibu J V
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2018-2030
    • /
    • 2015
  • A two stage ac drive configuration consisting of a single-phase line commutated rectifier and a three-phase voltage source inverter (VSI) is very common in low and medium power applications. The deterministic pulse width modulation (PWM) methods like sinusoidal PWM (SPWM) could not be considered as an ideal choice for modern drives since they result mechanical vibration and acoustic noise, and limit the application scope. This is due to the incapability of the deterministic PWM strategies in sprawling the harmonic power. The random PWM (RPWM) approaches could solve this issue by creating continuous harmonic profile instead of discrete clusters of dominant harmonics. Insufficient filtering at dc link results in the amplitude distortion of the input dc voltage to the VSI and has the most significant impact on the spectral errors (difference between theoretical and practical spectra). It is obvious that the sprawling effect of RPWM undoubtedly influenced by input fluctuation and the discrete harmonic clusters may reappear. The influence of dc link fluctuation on harmonics and their spreading effect in the VSI remains invalidated. A case study is done with four different filter capacitor values in this paper and results are compared with the constant dc input operation. This paper also proposes an ingenious RPWM, a ripple dosed sinusoidal reference-random carrier PWM (RDSRRCPWM), which has the innate capacity of suppressing the effect of input fluctuation in the output than the other modern PWM methods. MATLAB based simulation study reveals the fundamental component, total harmonic distortion (THD) and harmonic spread factor (HSF) for various modulation indices. The non-ideal dc link is managed well with the developed RDSRRCPWM applied to the VSI and tested in a proto type VSI using the field programmable gate array (FPGA).

Using frequency response function and wave propagation for locating damage in plates

  • Quek, Ser-Tong;Tua, Puat-Siong
    • Smart Structures and Systems
    • /
    • v.4 no.3
    • /
    • pp.343-365
    • /
    • 2008
  • In this study, the frequency domain method which utilizes the evaluation of changes in the structural mode shape is adopted to identify regions which contain localized damages. Frequency response function (FRF) values corresponding to the modal frequency, analogous to the mode shape coefficients, are used since change in natural frequency of the system is usually insignificant for localized damage. This method requires only few sensors to obtain the dynamic response of the structure at specific locations to determine the FRF via fast-Fourier transform (FFT). Numerical examples of an aluminum plate, which includes damages of varying severity, locations and combinations of multiple locations, are presented to demonstrate the feasibility of the method. An experimental verification of the method is also done using an aluminum plate with two different degrees of damage, namely a half-through notch and a through notch. The inconsistency in attaining the FRF values for practical applications due to varying impact load may be overcome via statistical averaging, although large variations in the loading in terms of the contact duration should still be avoided. Nonetheless, this method needs special attention when the damages induce notable changes in the modal frequency, such as when the damages are of high severity or cover more extensive area or near the boundary where the support condition is modified. This is largely due to the significant decrease in the frequency term compared to the increase in the vibration amplitude. For practical reasons such as the use of limited number of sensors and to facilitate automation, extending the resolution of this method of identification may not be efficient. Hence, methods based on wave propagation can be employed as a complement on the isolated region to provide an accurate localization as well as to trace the geometry of the damage.

Flow structures around rectangular cylinder in the vicinity of a wall

  • Derakhshandeh, J.F.;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.293-304
    • /
    • 2018
  • A numerical study is conducted on the flow characteristics of a rectangular cylinder (chord-to-width ratio C/W = 2 - 10) mounted close to a rigid wall at gap-to-width ratios G/W = 0.25 - 6.25. The effects of G/W and C/W on the Strouhal number, vortex structure, and time-mean drag and lift forces are examined. The results reveal that both G/W and C/W have strong influences on vortex structure, which significantly affects the forces on the cylinder. An increase in G/W leads to four different flow regimes, namely no vortex street flow (G/W < 0.75), single-row vortex street flow ($0.75{\leq}G/W{\leq}1.25$), inverted two-row vortex street flow ($1.25<G/W{\leq}2.5$), and two-row vortex street flow (G/W > 2.5). Both Strouhal number and time-mean drag are more sensitive to C/W than to G/W. For a given G/W, Strouhal number grows with C/W while time-mean drag decays with C/W, the growth and decay being large between C/W = 2 and 4. The time-mean drag is largest in the single-row vortex street regime, contributed by a large pressure on the front surface, regardless of C/W. A higher C/W, in general, leads to a higher time-mean lift. The maximum time-mean lift occurs for C/W = 10 at G/W = 0.75, while the minimum time-mean lift appears for C/W = 2 at the same G/W. The impact of C/W on the time-mean lift is more substantial in single-row vortex regime. The effect of G/W on the time-mean lift is larger at a larger C/W.

Non-linear dynamic assessment of low-rise RC building model under sequential ground motions

  • Haider, Syed Muhammad Bilal;Nizamani, Zafarullah;Yip, Chun Chieh
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.789-807
    • /
    • 2020
  • Multiple earthquakes that occur during short seismic intervals affect the inelastic behavior of the structures. Sequential ground motions against the single earthquake event cause the building structure to face loss in stiffness and its strength. Although, numerous research studies had been conducted in this research area but still significant limitations exist such as: 1) use of traditional design procedure which usually considers single seismic excitation; 2) selecting a seismic excitation data based on earthquake events occurred at another place and time. Therefore, it is important to study the effects of successive ground motions on the framed structures. The objective of this study is to overcome the aforementioned limitations through testing a two storey RC building structural model scaled down to 1/10 ratio through a similitude relation. The scaled model is examined using a shaking table. Thereafter, the experimental model results are validated with simulated results using ETABS software. The test framed specimen is subjected to sequential five artificial and four real-time earthquake motions. Dynamic response history analysis has been conducted to investigate the i) observed response and crack pattern; ii) maximum displacement; iii) residual displacement; iv) Interstorey drift ratio and damage limitation. The results of the study conclude that the low-rise building model has ability to resist successive artificial ground motion from its strength. Sequential artificial ground motions cause the framed structure to displace each storey twice in correlation with vary first artificial seismic vibration. The displacement parameters showed that real-time successive ground motions have a limited impact on the low-rise reinforced concrete model. The finding shows that traditional seismic design EC8 requires to reconsider the traditional design procedure.

A study on the design features for sports bra styles according to treadmill running speeds and bra cup sizes (러닝 속도와 브라 컵 사이즈에 따른 스포츠브라 디자인 요소 선택에 관한 연구)

  • Jang, Yumi;Chun, Jongsuk;Lee, Haedong;Han, Boram
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • Many women feel pain in their breasts while running due to an excessively large degree of breast movement. Therefore, most sports bras pursue a reduction in breast movement. The purpose of this study is to investigate the breast movement reduction effect of a selection of sports bra designs according to the intensity of the sport and the breast size of the wearer. The study measured differences in the vertical movement of the nipple with 4 types of sports bras and 3 exercise speeds(4km/h, 7km/h, and 10km/h). Subjects included women in their 20s with bra sizes of either B cup(n=3) or C cup(n=3). The results of the study are as follows. Breast movement differed according to running speed and breast size; breast movement significantly increased starting with jogging speed(7km/h), and the C-cup group had a larger degree of vertical movement than the B-cup group. A superior effect on breast movement during jogging(7km/h) and sprinting(10km/h) was observed differently by bra cup sizes. To C-cup group, encapsulation-style sports bra, which provides horizontal support across the upper breast and padding inside the shoulder strap and bra cup to ease impact was most effective and next effective style was the compression-style bra with a princess line to cover the breasts solidly. Most style sports bra were effective in the B-cup group. Besides aforementioned encapsulation-style sports bra, the compression-style bra with a band, which presses the breasts against the chest wall, reduced breast movement effectively.

Trajectory Studies of Methyl Radical Reaction with Iodine Molecule

  • Lee, Sang-Kwon;Ree, Jong-Baik;Kim, Yoo-Hang;Shin, Hyung-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1369-1380
    • /
    • 2005
  • The reaction of methyl radical with iodine molecule on an attractive potential energy surface is studied by classical trajectory procedures. The reaction occurs over a wide range of impact parameters with the majority of reactive events occurring in the backward rebound region on a subpicosecond scale. A small fraction of reactive events take place in the forward hemisphere on a longer time scale. The ensemble average of reaction times is 0.36 ps. The occurrence of reactive events is strongly favored when the incident radical and the target molecule align in the neighborhood of collinear geometry. Since the rotational velocity of I2 is slow, the preferential occurrence of reactive events at the collinear configuration of $CH_3{\ldots}I{\ldots}$I leads to the reaction exhibiting an anisotropic dependence on the orientation of $I_2$. During the collision, there is a rapid flow of energy from the $H_3C{\ldots}$I interaction to the I-I bond. The $CH_3I$ translation and $H_3C$-I vibration share nearly all the energy released in the reaction, and the distribution of the vibrational energy is statistical. The reaction probability is $\cong$0.4 at the $CH_3$ and I2 temperatures maintained at 1000 K and 300 K, respectively. The probability is weakly dependent on the $CH_3\;and\;I_2$ temperatures between 300 K and 1500 K.

Suggestion of Flexural Strengthening Ratio of NSM Strengthened Concrete Railroad Bridge based on Probability and Reliability (확률.신뢰도에 기초한 표면매립보강(NSM) 콘크리트 철도교의 휨보강비 산정)

  • Oh, Hong-Seob;Sim, Jong-Sung;Ju, Min-Kwan;Lee, Ki-Hong;Park, Ji-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.121-124
    • /
    • 2008
  • The purpose of this study is to evaluate the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate. The railroad bridge is usually under vibration and impact in service state. Therefore, it is important that the effective strengthening performance must be exhibited under the service loading is acted. To widely apply the NSM method for the concrete railroad bridge in field, it needs that reasonable strengthening parameter such as strengthening ratio has to be investigated and evaluated when the strengthening design is conducted. In this study, to suggest more reasonable strengthening ratio, material and geometrical uncertainty was considered and applied by Monte Carlo Simulation (MSC) technique. Lastly, the critical strengthening ratio of concrete railroad bridge strengthened with NSM using CFRP plate was evaluated by using the limit state function with the target reliability index.

  • PDF

Evaluation of Shock-Absorbing Performance of Three-Different Types of Bicycle Suspension Systems (자전거에서 서스펜션 종류에 따른 인체영향 시뮬레이션)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Kim, Sa-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.943-946
    • /
    • 2010
  • In this study, a front suspension system, which is mounted on the handle itself, was suggested because of its light weight and cost efficiency. The shock absorption was evaluated for the three types of suspension models; non-suspension, suspension on front forks (existing model), and suspension on handle (suggested model). The human body model was used for performing impact simulation for comparing the shock absorption for the suspension models. The result of the simulation shows that shock absorption for the proposed suspension model was not as good as that for the front fork suspension model. Nevertheless, the shock absorption observed for the proposed suspension model was significant when compared to the non-suspension model. Consequently, the proposed suspension model could be applied to lightweight bicycles.