• Title/Summary/Keyword: Impact velocity

Search Result 1,338, Processing Time 0.033 seconds

Experimental Study on the Damage of Concrete Material by Impact Load (충격 하중에 의한 콘크리트 재료의 손상에 관한 실험적 연구)

  • Song, Jeong-Un;Park, Hoon;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.27 no.2
    • /
    • pp.26-32
    • /
    • 2009
  • Although the number of blasting operations in urban area are growing, lesser attentions have been paid to the effects of impact load on nearby concrete structures. In this study, the properties of concrete were obtained by both the sonic velocity and Schmidt rebound tests, and the degree of damage in concrete material was evaluated by measuring the sonic velocity in sample before and after applying the impact load. The test results shows that the sonic velocity decreases with the increase of intensity of impact load, and the degree of damage in concrete samples is lower when the samples have higher strength and sonic velocity.

Low-velocity Impact Damdage Monitoring for Laminate Composite panels Using PVDF Sensor Signals and Acoustics Emission Signals (압전센서와 음향방출신호를 이용한 적층복합재 판재에 대한 저속 충격손상 모니터링)

  • Kim, Hyoung-Il;Kim, Jin-Won;Kim, In-Gul
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.27-30
    • /
    • 2005
  • This paper studied the PVDF(polyvinylidene fluoride) and Acoustic Emission sensors characteristics of the laminated composite panels under the low velocity impact. The various impact test by changing impact height is performed on the instrumented drop weight impact tester. The STFT(short time Fourier transform) and WT(wavelet transform) are used to decompose the each sensor signals. A ultrasonic C-scan and digital scope are used to define damaged area in each case. The test result indicated that the individual sensor signals involve the damage initiation and development.

  • PDF

A Study on the ballistic impact resistance and dynamic failure behavior of aramid FRMLs by high velocity impact (고속충격에 의한 아라미드 섬유강화 금속적층재의 방탄성능 및 동적파손거동에 관한 연구)

  • 손세원;이두성;김동훈;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-532
    • /
    • 2000
  • The armor composite material targets such as aramid FRMLs with different type and ply number of face material and different type of back-up material, were studied to determine ballistic impact resistance and dynamic failure behavior during ballistic impact. Ballistic impact resistance is determined by $\textrm{V}_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Also dynamic failure behaviors are respectfully observed that result from $\textrm{V}_{50}$ tests. $\textrm{V}_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during high velocity impact tests. As a result, ballistic impact resistance of anodized Al 5052-H34 alloy(2 ply) is better than that of anodized Al 5052-H34 alloy(1 ply), but Titanium alloy showed the similar ballistic impact resistance. In the face material, ballistic impact resistance of titanium alloy is better than that of anodized Al 5052-H34 alloy. In the back-up material, ballistic impact resistance of T750 type aramid fiber is better than that of CT709 type aramid fiber.

  • PDF

The Impact fracture Behaviors of Low Density LD Carbon/Carbon Composites by Drop Weight Impact Test (낙하 충격 시험에 의한 저밀도 2-D탄소/탄소 복합재의 충격파괴거동)

  • 주혁종;손종석
    • Polymer(Korea)
    • /
    • v.26 no.2
    • /
    • pp.270-278
    • /
    • 2002
  • In this study, the fracture behavior by low velocity impact damage and the tendencies of impact energy absorption were investigated. Low velocity impact tests were performed using a mini tower drop weight impact tester, and graphite powder, carbon black and milled carton fiber were chosen as additives. Addition of graphite powder increased the maximum load and maintained the stress long until the total penetration happened. At the content of 9 vol%, they showed the maximum of 42% improvement in impact strength compared composites containing no additives. At the test with low impact energy of 0.4 J, impact energy was consumed by delamination in the composite containing no additives, however, as graphite contents increased, the tendency of failure changed to the penetration of the specimen.

A Study on Factors Influencing P-wave Velocity of Concrete (콘크리트의 P파 속도에 영향을 주는 인자에 관한 연구)

  • 이광명;이회근;김동수;김지상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.725-730
    • /
    • 1998
  • Recently, non-destructive tests are getting popular in evaluating concrete properties without braking specimens. Among several NDT methods, P-wave velocity measurement technique has been widely used to evaluate the stiffness and strength of concrete. The purpose of this study is to investigate factors influencing P-wave velocity measured by impact-resonant method and ultrasonic pulse velocity method, such as moisture content of concrete, existence and size of coarse aggregates, sensor and sampling rate. Test results show that rod-wave velocity measured by impact-resonant method and ultrasonic pulse velocity are significantly affected by the moisture content of concrete, i.e., the lower moisture content, the lower velocity. Moisture content influences rod-wave velocity stronger than ultrasonic pulse velocity. Rod-wave velocity is faster in concrete than in mortar and is also faster in concrete containing small size aggregates. Sensor and sampling rate have little influence on velocity.

  • PDF

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

A Study on the Delamination Growth in Composite Laminates Subjected to Low-Velocity Impact (저속 충격을 받는 복합 재료 적층판의 층간 분리 성장에 관한 연구)

  • 장창두;송하철;김호경;허기선;정종진
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.55-59
    • /
    • 2002
  • Delamination means that cracking occurs on the interface layer between composite laminates. In this paper, to predict the delamination growth in composite laminates subjected to low-velocity impact, the unit load method was introduced, and an eighteen-node 3-D finite element analysis, based on assumed strain mixed formulation, was conducted. Strain energy release rate, necessary to determine the delamination growth, was calculated by using the virtual crack closure technique. The unit load method saves the computation time more than the re-meshing method. The virtual crack closure technique enables the strain energy release rate to be easily calculated, because information of the singular stress field near the crack tip is not required. Hence, the delamination growth in composite laminates that are subjected to low-velocity impact can be efficiently predicted using the above-mentioned methods.