• Title/Summary/Keyword: Impact velocity

Search Result 1,333, Processing Time 0.03 seconds

A Study on Low-Velocity Impact Characterization of Honeycomb Sandwich Panels According to the Changes of Impact Location and Core Fabrication Angles (충격위치와 심재적층각도에 따른 하니컴 샌드위치 패널의 저속충격 특성 연구)

  • Jeon, Kwang-Woo;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Dae-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • In this paper, a study on low-velocity impact response of honeycomb sandwich panels was done for the changes of impact location and core fabrication angles. The test specimens were made of glass/epoxy laminate facesheet and aluminum honeycomb core. Square samples of 100mm and 100mm sides were subjected under low-velocity impact loading using instrumented testing machine at three energy levels. Impact parameters like maximum force, time to maximum force, deflection at maximum force and absorbed energy were evaluated and compared for the changes of impact location and core fabrication angle. The impact damage size were measured at facesheet surface by 3-Dimensional scanner. Also, sandwich specimens after impact test were cut to analyse the failure mode.

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

Experimental Investigation of Low Velocity Impact Characteristics of Composites Laminate Used in the Light Rail Transit (경전철용 복합적층재에 대한 저속충격특성의 실험적 연구)

  • 김재훈;김후식;박병준;조정미;주정수
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.211-216
    • /
    • 2001
  • It is well known that composite laminates are easily damaged by low velocity impact. Low velocity impact damage characteristics and residual compressive strength of composite laminates used in light rail transit are investigated. The damage of composite laminates subjected to impact loading are occurred matrix cracking, delamination, and fiber breakage. The damage of matrix cracking and delamination are reduced suddenly the compressive strength after impact. The objectives of this study is to evaluate impact characteristics and the relationship between impact force and inside damage of composite laminates by low velocity impact loading. UT C-scan is used to determine impact damage areas by impact loading.

  • PDF

Prediction of Ballistic Limit for Composite Laminates Subjected to High-velocity Impact Using Static Perforation Test (정적압입 관통 실험을 이용한 복합재 적층판의 고속충격 탄도한계속도 예측)

  • You, Won-Young;Kim, In-Gul;Lee, Seokje;Kim, Jong-Heon
    • Composites Research
    • /
    • v.26 no.1
    • /
    • pp.21-28
    • /
    • 2013
  • The ballistic limit of Carbon/Epoxy composite laminates with the finite effective area are predicted by using the quasi-static perforation test and semi-empirical formula. The perforation energy were calculated from force-displacement curve in quasi-static perforation test. Also, the actual ballistic limit and penetration energy were obtained through the high-velocity impact test. The quasi-static perforation test and high-velocity impact test were conducted for the specimens with 3 different effective areas. In the high-velocity impact test, the air gun impact tester were used, and the ballistic and residual velocity was measured. The required inputs for the semi-empirical formula were determined by the quasi-static perforation tests and high-velocity impact tests. The comparison between semi-empirical formula and high-velocity impact test results were conducted and examined. The ballistic limits predicted by semi-empirical formula were agreed well with high-velocity impact test results.

Compare Characteristics of Neck Injuries between Rear Impact Pulse and NCAP Pulse (후방 충돌 펄스와 NCAP 펄스 차이로 인한 목상해 특성 비교)

  • Kim, Jong Kon;Park, Jong Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.7-12
    • /
    • 2017
  • The whiplash is the most important issue of low speed rear-impact. So auto makers are committed to developing a seat to improve whiplash injury. Most NCAP tests have been used by same pulse (Mid Velocity 16kph). Only Euro NCAP uses different pulse that consists of Low, Mid, High velocity. But Euro NCAP also uses same pulse in Mid velocity as other NCAP test. That Mid velocity NCAP pulse was made by rear impact that has 90's vehicle structure properties. That pulse was used until now days. However these days, auto maker use more high tensile steel than 90's as customer and society demand more fuel efficiency and light vehicle with good safety structure. So modern vehicles have different pulse patterns of rear impact than NCAP pulse and 90's vehicle crash properties. In this paper, the test was conducted by following condition. Target car was impacted by the rigid barrier with certain velocity. Finally target vehicle gained delta V 16kph which was same velocity as NCAP Mid Velocity pulse. It is critical velocity which occur long period neck injury. It is very different pulse that was gained by real car impact from NCAP pulse. And it has higher peak G with high fluctuation and short duration than NCAP pulse.

Design and analysis of low velocity impact on thermoplastic hat section with curvilinear profile

  • Gaur, Kumresh K;Dwivedi, Mayank;Bhatnagar, Naresh
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.65-78
    • /
    • 2017
  • A hat section was designed and developed for maximum impact energy absorption and/or transmission under low velocity impact. Towards this, different hat sections, having material properties of thermoplastic, were modeled and investigated numerically using finite element analysis (FEA) in the range of 20-50 J impact energy. In the study it was experienced that the design configuration of hat section with curvilinear profile (HSCP) was excellent in energy attenuation capacity and for even distribution of maximum impact force around and along the hat section under low velocity impact loading. To validate the numerical findings, polypropylene copolymer (Co-PP) HSCP and low density polyethylene (LDPE) HSCP were developed and evaluated experimentally in the said impact energy range. A correlation was established between FEA and experimental test results, thereby, validating a numerical model to predict results for other thermoplastic materials under given range of impact energy. The LDPE HSCP exhibited better performance as compared to Co-PP HSCP in the said range of impact energy. The findings of this study will enable the engineers and technologists to design and develop low velocity impact resistance devices for various applications including devices to protect bone joints.

An Experimental Study on Low-Velocity Impact Test and Response of Composite Laminates (복합적층판의 저속충격시험 및 거동에 대한 실험적 연구)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.359-371
    • /
    • 1994
  • A drop weight type impact test system is designed and set up to experimentally investigate impact responses of composite laminates subjected to the low-velocity impact. Using the test system, the impact velocity and the rebound velocity of the impactor as well as the impact force history are measured. An error of the measured data due to a difference in measuring position of the sensor is corrected and, for the estimation of real contact force history, a method of correcting an error due to friction forces is developed. Experimental methods to fix the boundary edgy of laminate specimens in impact testing are investigated and the impact tests on the specimens fixed by those methods are performed. Impact force histories and dynamic strains measured from the tests are compared with numerical results from the finite element analysis using the contact law. Consequently, the nonlinear numerical results considering the large deflection effects are agreed with the experimental results better than the linear ones.

Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection (고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석)

  • 최익현;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

Low-Velocity Impact Damage Detection for Gr/Ep Laminates Using PVDF Sensor Signals (PVDF 센서신호를 이용한 Gr/Ep 적층판의 저속충격 손상탐지)

  • 박찬익;김인걸;이영신
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.158-162
    • /
    • 2003
  • The PVDF(polyvinylidene fluoride) film sensor as one of smart sensors has good characteristics to detect the impact damages of composite structures. The capabilities of the PVDF film sensor for evaluating impact behaviors and damages of Gr/Ep laminates subjected to low-velocity impact were examined. From sensor signals, the specific wave-forms implying the damage were detected. The wavelet transform(WT) and Short Time Fourier Transform(STFT) were used to decompose the piezoelectric sensor signals in this study. The impact behaviors of Gr/Ep laminates were simulated and the impact forces were reconstructed using the sensor signals. Finally, the impact damages were predicted by finite element analysis with the reconstructed forces. For experimental verification, a series of low-velocity impact tests from low energy to damage-induced energy were carried-out. The extent of damage in each case was examined by means of ultrasonic C-scan and the measured damage areas were agreed well with the predicted areas by the F.E.A.

  • PDF

Study on Vertical Velocity-Based Pre-Impact Fall Detection (수직속도 기반 충격전 낙상 감지에 관한 연구)

  • Lee, Jung Keun
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.251-258
    • /
    • 2014
  • While the feasibility of vertical velocity as a threshold parameter for pre-impact fall detection has been verified, effects of sensor attachment locations and methods calculating vertical acceleration and velocity on the detection performance have not been studied yet. Regarding the vertical velocity-based pre-impact fall detection, this paper investigates detection accuracies of eight different cases depending on sensor locations (waist vs. sternum), vertical accelerations (accurate acceleration based on both accelerometer and gyroscope vs. approximated acceleration based on only accelerometer), and vertical velocities (velocity with attenuation vs. velocity difference). Test results show that the selection of waist-attached sensor, accurate acceleration, and velocity with attenuation based on accelerometer and gyroscope signals is the best in overall in terms of sensitivity and specificity of the detection as well as lead time.