• Title/Summary/Keyword: Impact strain analysis

Search Result 302, Processing Time 0.025 seconds

Finite element analysis of eccentric loading in high-velocity impact forging (고속 타격단조시 발생되는 편심부하의 유한요소해석)

  • Yoo, Yo-Han;Yang, Dong-Yol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.10
    • /
    • pp.1589-1597
    • /
    • 1997
  • The high-velocity impact forging process with eccentric loading condition is analyzed using the explicit time integration finite element method. In order to consider the strain hardening, strain rate hardening and thermal softening effects, which are frequently observed in high-velocity deformation phenomena, the Johnson-Cook constitutive model is applied to model the workpiece. It is assumed that the material response of the dies is elastic in the study. As a result of the eccentric loading simulation, it is found that the increase of the eccentric ratio and the allowable tilting angle cause the decrease of the maximum forging load and the blow efficiency, and it is also found that the forging load and the blow efficiency generated in the high-velocity impact forging process with three-dimensional geometry can be obtained efficiently.

Dynamic Shear Stress of Tough-Pitch Copper at High Strain and High Strain-Rate

  • Moon, Wonjoo;Seo, Songwon;Lim, Jaeyoung;Min, Oakkey
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1412-1419
    • /
    • 2002
  • Dynamic shear tests for the tough-pitch copper at high strain and high strain rate was performed. The Split Hopkinson Pressure Bar (SHPB) compression test system was modified to yield a shear deformation in the specimen. Hat-shaped specimens for the tough-pitch copper were adopted to generate high strain of γ=3~4 and high strain-rate of γ= 10$^4$/s. The dynamic analysis by ABAQUS 5.5/EXPLICIT code verified that shear zone can be localized in hat-shaped specimens. A proper impact velocity and the axial length of the shear localization region wert determined through the elastic wave analysis. The displacement in a hat-shaped specimen is limited by a spacer ring which was installed between the specimen and the incident bar. The shear bands were obtained by measuring the direction of shear deformation and the width of deformed grain in the shear zone. The decrease of specimen length has been measured on the optical displacement transducer. Dynamic shear stress-strain relations in the tough-pitch copper were obtained at two strain-rates.

Dynamic Nonlinear Analysis Model for Reinforced Concrete Elements considering Strain Rate Effects under Repeated Loads (변형율속도를 고려한 반복하중을 받는 철근콘크리트 부재의 동적 비선형 해석모델)

  • 심종성;문일환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.78-83
    • /
    • 1990
  • The current analytical techniques for R/C elements under severe dynamic repeated loads, like earthquake or impact, has two major problems; one is that the effects of strain rate are not considered and the other one is the current model was developed based on flexural behavior only. Thus, this study develops a computer software that can idealize the flexural and shear behavior of R/C elements using several parameters and also can consider the effects of strain rate. The analytical results using the developed analytical technique were compared with several experimental results and were generally satisfied.

  • PDF

Impact Response Behaviors of Laminated Composite Plates Subjected to the Transversely Impact of a Steel Ball (강구에 의한 횡방향 충격을 받는 적층복합판의 충격 응답 거동)

  • 김문생;김남식;박승범;백인환
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.44-56
    • /
    • 1993
  • The purpose of this paper is to analyze the impact response behaviors of glass/epoxy laminated composite plates subjected to the transversely impact of a steel ball. For this purpose, dynamic finite element analysis based on the higher-order shear defomation plate theory is used to compute the contact forces, rebound velocity of a steel ball, and dynamic strain response histories. And low-velocity and high-velocity impact experiments were conducted to compare the results and compute the wave propagation velocities. The results obtained from impact experiments are in good agreement with those of dynamic finite element analysis. Also the wave propagation velocities obtained from high-velocity impact experiments and wave propagation theory agree well, and wave velocities were higher in the smaller radius of steel ball.

  • PDF

Response of triceratops to impact forces: numerical investigations

  • Chandrasekaran, Srinivasan;Nagavinothini, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.349-368
    • /
    • 2019
  • Triceratops is one of the new generations of offshore compliant platforms suitable for ultra-deepwater applications. Apart from environmental loads, the offshore structures are also susceptible to accidental loads. Due to the increase in the risk of collision between ships and offshore platforms, the accurate prediction of structural response under impact loads becomes necessary. This paper presents the numerical investigations of the impact response of the buoyant leg of triceratops usually designed as an orthogonally stiffened cylindrical shell with stringers and ring frames. The impact analysis of buoyant leg with a rectangularly shaped indenter is carried out using ANSYS explicit analysis solver under different impact load cases. The results show that the shell deformation increases with the increase in impact load, and the ring stiffeners hinder the shell damage from spreading in the longitudinal direction. The response of triceratops is then obtained through hydrodynamic response analysis carried out using ANSYS AQWA. From the results, it is observed that the impact load on single buoyant leg causes periodic vibration in the deck in the surge and pitch degrees of freedom. Since the impact response of the structure is highly affected by the geometric and material properties, numerical studies are also carried out by varying the strain rate, and the location of the indenter and the results are discussed.

C]RASH ANALYSIS OF AUTO-BODY STRUCTURES CONSIDERING THE STRAIN-RATE HARDENING EFFECT

  • Kang, W.J.;Huh, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • The crashworthiness of vehicles with finite element methods depends on the geometry modeling and the material properties. The vehicle body structures are generally composed of various members such as frames, stamped panels and deep-drawn parts from sheet metals. In order to ensure the impact characteristics of auto-body structures, the dynamic behavior of sheet metals must be examined to provide the appropriate constitutive relation. In this paper, high strain-rate tensile tests have been carried out with a tension type split Hopkinson bar apparatus specially designed for sheet metals. Experimental results from both static and dynamic tests with the tension split Hopkinson bar apparatus are interpolated to construct the Johnson-Cook and a modified Johnson-Cook equation as the constitutive relation, that should be applied to simulation of the dynamic behavior of auto-body structures. Simulation of auto-body structures has been carried out with an elasto-plastic finite element method with explicit time integration. The stress integration scheme with the plastic predictor-elastic corrector method is adopted in order to accurately keep track of the stress-strain relation for the rate-dependent model accurately. The crashworthiness of the structure with quasi-static constitutive relation is compared to the one with the rate-dependent constitutive model. Numerical simulation has been carried out for frontal frames and a hood of an automobile. Deformed shapes and the Impact energy absorption of the structure are investigated with the variation of the strain rate.

  • PDF

Compressive Deformation Behaviors of Aluminum Alloy in a SHPB Test (SHPB 시험과 알루미늄 합금의 압축 변형거동)

  • Kim, Jong-Tak;Woo, Sung-Choong;Kim, Jin-Young;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.617-622
    • /
    • 2012
  • Structures are often subjected to various types of loading such as static, dynamic, or impact loading. Therefore, experimental and numerical methods have been employed to find adequate material properties according to the conditions. The Split-Hopkinson pressure bar (SHPB) test has frequently been used to test engineering materials, particularly those used under high strain rates. In this study, the compressive deformation behaviors of aluminum alloy under impact conditions have been investigated by means of the SHPB test. The experimental results were then compared with those of finite element analyses. It was shown that reasonably good agreement with the true stress-strain curves was obtained at strain rates ranging from 1000 $s^{-1}$ to 2000 $s^{-1}$. When the strain rate increased by 30%, the peak stress in particular increased by 17%, and the strain also increased by 20%.

Sports impact on the nanomedicine absorption in drug delivery

  • Mengqian Hou;Xin Fang;Teng Nan
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.179-193
    • /
    • 2023
  • Physical activities enhance blood flow in the vessels, which may increase the quality of medicine delivery. The emergence of revolutionary technologies such as nanoscience, made it possible to treat the incurable illnesses such as cancer. This paper investigates the impact of sport and physical exercises on the quality and quantity of the drug-delivery based on the mathematical modeling of a nanomotor made by nanotubes carrying the nano-drug capsules. Accordingly, the mathematical equations of rotating nanomotor are generated by considering the both of higher-order beam model and nonlocal strain gradient model, as a comprehensive continuum theory. Next, through the generalized differential quadrature together with Newmark-beta methods, the differential relations are discretized and solved. Finally, the impact of varied parameters on the dynamical behavior of the nanomotor is examined in detail. The outcomes of this investigation can be useful to achieve an excellent design of nanomotors carrying nano-drugs.

Analysis of impact response and damage in laminated composite cylindrical shells undergoing large deformations

  • Kumar, Surendra
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.349-364
    • /
    • 2010
  • The impact behaviour and the impact-induced damage in laminated composite cylindrical shell subjected to transverse impact by a foreign object are studied using three-dimensional non-linear transient dynamic finite element formulation. A layered version of 20 noded hexahedral element incorporating geometrical non-linearity is developed based on total Langragian approach. Non-linear system of equations resulting from non-linear strain displacement relation and non-linear contact loading are solved using Newton-Raphson incremental-iterative method. Some example problems of graphite/epoxy cylindrical shell panels are considered with variation of impactor and laminate parameters and influence of geometrical non-linear effect on the impact response and the resulting damage is investigated.

Effects of Pre-Strains on Failure Assessment Analysis to API 5L X65 Pipeline

  • Baek, Jong-Hyun;Kim, Young-Pyo;Kim, Woo-Sik;Seok, Chang-Sung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.219-223
    • /
    • 2009
  • This paper prescribed the structural integrity of the API 5L X65 pipeline subjected to tensile pre-strain. The effects of pre-strain on the mechanical properties of API 5L X65 pipe were substantially investigated through a variety of the experimental procedures. Axial tensile pre-strain of 1.5, 5 and 10% was applied to plate-type tensile specimens cut from the pipe body prior to mechanical testing. Tensile test revealed that yield strength and tensile strength were increased with increasing tensile pre-strain. The increasing rate of the yield strength owing to the pre-strain is greater than that of the tensile strength. However, the pre-strain up to 5% had a little effect on the decreasing of the fracture toughness. The structural integrity of the API 5L X65 pipeline subjected to large plastic deformation was evaluated through the fitness-for service code.