• Title/Summary/Keyword: Impact resistance test

Search Result 350, Processing Time 0.036 seconds

Impact Resistance Testing of NK55 Ophthalmic Lenses in Domestic Market (국내 유통 NK55 재질 안경렌즈의 내충격 시험 평가)

  • Park, Mijung;Jeon, Inchul;Hwang, Kwang Hoon;Byun, Woongjin;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • Purpose: The present study was performed to evaluate the safety of ophthalmic lenses in domestic market since eyeglasses wearers could be exposed to the negligent accident by damaged ophthalmic lenses. Method: Totally, 160 ophthalmic lenses (NK55, ${n_{d}}$ = 1.56) with the refractive powers of -3D, -6D, +3D, +6D manufactured by 4 companies in domestic market were evaluated using drop ball test. In accordance with FDA standard, steel ball (~16 g) was freely dropped on these ophthalmic lenses from 127 cm high and the surfaces of lenses were observed. Results: From the study, center thicknesses of NK55 ophthalmic lenses manufactured by 4 different companies showed somewhat different numbers even though the lenses had the same refractive index and powers. All convex lenses of +3D, +6D were evaluated as the safe lenses since there was no damage such as crack and broken found on the lens surfaces after drop ball testing. However, some noticeable broken was shown on the surfaces of concave lenses with relatively thinner center thickness. Especially, 59(73.8%) of total 80 concave lenses with the refractive power of -3D and -6D classified as unacceptable lenses to FDA standard. Conclusions: From the results, the negligent accident by damaged ophthalmic lenses should be considered as well as the correction of visual acuity, design and price when customers purchase eyeglasses. Thus, the enforcement regulation like drop ball testing of uncut ophthalmic lens could be suggested to guarantee the safety of ophthalmic lenses in domestic market.

Experimental Study on Segregated Layers of Materials and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile (PHC 파일의 압축강도와 재료분리층에 대한 실험연구)

  • 이성로;강성수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Pretensioned spun high strength concrete (PHC) pile has to be quality-controlled and provided an adequate concrete cover to assure high load carrying capacity, impact resistance, economy, and durability. During spun pre-casting, the pile section is divided into several segregated layers such as laitance, paste, mortar, and concrete layers. Greater the thickness of segregated layers, more difficult it is to guarantee the capacity and the durability of PHC pile. The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for PHC pile. The considering factors in the test were centrifugal time and magnitude of centrifugal force. These factors have been found to have greater influence on the segregation than the concrete strength. The moderate centrifugal condition has to be considered to maintain quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over its tendons.

Finite Element Analysis of Large Deformation of Fiber Metal Laminates Under Bending for Stress-Strain Prediction (굽힘하중을 받는 섬유 금속 적층판의 응력-변형률 예측을 위한 대변형 유한요소해석)

  • Yeom, Kyung Mi;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.10
    • /
    • pp.963-970
    • /
    • 2015
  • Laminate structures are used in the automobile, aerospace, and display industries. The advantages of fiber metal laminates are well known. Fiber metal laminates are useful for reducing the weight and improving impact resistance . However, currently, the mechanical properties of fiber metal laminates are not derived. In this paper, we use thickness as a factor for comparing the properties of laminates of various thickness combinations. The properties fiber metal laminates are analyzed using design of experiments. In addition, the finite element method is used to analyze elastic and plastic strains of fiber metal laminates and aluminum plates. The final goal of this paper is to find a suitable finite element model of fiber metal laminates under bending.

Studies of Valve Lifer for Automotive Heavy Duty Diesel Engine by Ceramic Materials II. Development of SiC Valve Lifter by Injection Molding Method (Ceramic 재질을 이용한 자동차용 대형 디젤엔진 Valve Lifter 연구 II. 사출성형에 의한 탄화규소질 Valve Lifter 개발)

  • 윤호욱;한인섭;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.2
    • /
    • pp.172-179
    • /
    • 1998
  • Valve lifter namely tappet is supported by lifter hole which is located upper side of camshaft in cylinder block transforms rotatic mvement of camshaft into linear movement and helps to open and shut the en-gine valve as an engine parts. The face of valve lifter which is continuously contacting with camshaft brings about abnormal wears such as unfair wear and early wear because it is severely loaded in the valve train system. These wears act as a defect like over-clearance and cause imperfect combustion of fuel during the valve lifting in the combustion chamber. Consequently this imperfect combustion makes the engine out-put decrease and has cause on air pollution. To prevent these wears therefore The valve lifter cast in me-tal developed into SiC ceramics valve lifter which has an excellence in wear and impact resistance As a results the optimum process conditions like injection condition mixture ratio and debonding process could be established. After sintering fine-sinered dual microstructure in which prior ${\alpha}$-SiC matches well with new SiC(${\beta}$-SiC) produced by reaction among the ${\alpha}$-SiC carbon and silicon was obtained. Based on the study it is verified that mechanical properties of SiC valve lifter are excellent in Vickers hardness 1100-1200 bending strength (300-350 Pa) fracture toughness(1.5-1.7 Mpa$.$m1/2) Through engine dynamo test-ing SiC valve lifter and metal valve lifter are examined and compared into abnormal phenomena such as early fracture unfair and early wear. It is hoped that this research will serve as an important springboard for the future study of heavy duty diesel engine parts developed by ceramics which has a good wear resis-tance relaibility and lightability.

  • PDF

Resistance Function of Rice Lipid Transfer Protein LTP110

  • Ge, Xiaochun;Chen, Jichao;Li, Ning;Lin, Yi;Sun, Chongrong;Cao, Kaiming
    • BMB Reports
    • /
    • v.36 no.6
    • /
    • pp.603-607
    • /
    • 2003
  • Abstract Plant lipid transfer proteins (LTPs) are a class of proteins whose functions are still unknown. Some are proposed to have antimicrobial activities. To understand whether LTP110, a rice LTP that we previously identified from rice leaves, plays a role in the protection function against some serious rice pathogens, we investigated the antifungal and antibacterial properties of LTP110. A cDNA sequence, encoding the mature peptide of LTP110, was cloned into the Impact-CN prokaryotic expression system. The purified protein was used for an in vitro inhibition test against rice pathogens, Pyricularia oryzae and Xanthomonas oryzae. The results showed that LTP110 inhibited the germination of Pyricularia oryzae spores, and its inhibitory activity decreased in the presence of a divalent cation. This suggests that the antifungal activity is affected by ions in the media; LTP110 only slightly inhibited the growth of Xanthomonas oryzae. However, the addition of LTP110 to cultured Chinese hamster ovarian cells did not retard growth, suggesting that the toxicity of LTP110 is only restricted to some cell types. Its antimicrobial activity is potentially due to interactions between LTP and microbe-specific structures.

Use of repeat anterior maxillary distraction to correct residual midface hypoplasia in cleft patients

  • Richardson, Sunil;Krishna, Shreya;Bansal, Avi
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.6
    • /
    • pp.407-414
    • /
    • 2017
  • Objectives: The study was designed to evaluate the efficacy of performing a second, repeat anterior maxillary distraction (AMD) to treat residual cleft maxillary hypoplasia. Materials and Methods: Five patients between the ages of 12 to 15 years with a history of AMD and with residual cleft maxillary hypoplasia were included in the study. Inclusion was irrespective of gender, type of cleft lip and palate, and the amount of advancement needed. Repeat AMD was executed in these patients 4 to 5 years after the primary AMD procedure to correct the cleft maxillary hypoplasia that had developed since the initial procedure. Orthopantomogram (OPG) and lateral cephalograms were taken for evaluation preoperatively, immediately after distraction, after consolidation, and one year postoperatively. The data obtained was tabulated and a Mann Whitney U-test was used for statistical comparisons. Results: At the time of presentation, a residual maxillary hypoplasia was observed with a well maintained distraction gap on the OPG which ruled out the occurrence of a relapse. Favorable movement of the segments without any resistance was seen in all patients. Mean maxillary advancement of 10.56 mm was achieved at repeat AMD. Statistically significant increases in midfacial length, SNA angle, and nasion perpendicular to point A distance was achieved (P=0.012, P=0.011, and P=0.012, respectively). Good profile was achieved for all patients. Minimal transient complications, for example anterior open bite and bleeding episodes, were managed. Conclusion: Addressing the problem of cleft maxillary hypoplasia at an early age (12-15 years) is beneficial for the child. Residual hypoplasia may develop in some patients, which may require additional corrective procedures. The results of our study show that AMD can be repeated when residual deformity develops with the previous procedure having no negative impact on the results of the repeat procedure.

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF

Effect of Ulmus Davidiana var. Japonica Nakai Extract on Antibiotic Resistant Bacteria in Dyed Cotton (유백피 추출액을 이용한 염색 면포의 항생제 내성균주 증식 억제효능)

  • Choi, Na Young;Kang, Sun-Young
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.2
    • /
    • pp.287-293
    • /
    • 2015
  • This research verifies stainability, super bacteria antibacterial features and antibiotic resistance of Ulmus davidiana var. japonica Nakai (UD) extract in dye cotton cloth. UD was extracted with hot water, the test cloth dyed, and then processed by mordanting treatment using $FeSO_4$ $7H_2O$, $CuSO_4$ $5H_2O$ and $Al_2(SO_4)_3$. The surface color and color fastness of the three kinds (original cloth, the cloth without mordancy and mordant cloth) were measured and the influence of dying of cotton cloth and the mordant method on the genesistasis of Methicillin-resistant Staphylococcus aureus (MRSA), antibiotic resistant bacteria. 1. The surface color of the cotton cloth for dyeing (without and with mordancy) displayed a reddish and yellowish color. Stainability was greatest when the mordant of $FeSO_4$ $7H_2O$ was used. 2. When a mordant was not used for dyeing, the color fastness to washing, perspiration and friction of the contaminated cloth was satisfactory at 4 to 5 grade in general. 3. As for the antibiotic effect to super bacteria, the growth of germ was meaningfully suppressed both on the cloth without and with mordancy compared to the comparison cloth; in addition, the dyeing method with the biggest antibacterial impact was found to be the mordancy with the mordant of $CuSO_4$ $5H_2O$ after dyeing. The results of the experiments that involved dyeing with UD extract showed that cotton cloth processed through mordancy with the mordant of $CuSO_4$ $5H_2O$ had the biggest antibiosis to super bacteria and that processed with the mordant of $FeSO_4$ $7H_2O$ had the greatest stainability.

Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2012
  • To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

AE Characteristic of Polyethylene Pipe under various defects (다양한 결함에 대한 폴리에틸렌 배관의 음향방출 특성)

  • Nam Ki Woo;Lee Si Yoon;Ahn Seok Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.3 s.24
    • /
    • pp.1-7
    • /
    • 2004
  • The polyethylene pipe can use semi-permanent because of the high corrosion resistance with chemical stability. In addition to, there is the merit that is an easy to establish and to maintain. However, as the reason that it is simply degraded when the polyethylene pipe was exposed to the outside, mainly it is used to lay under the ground with low-pressure gas transportation pipe. In this study, the nondestructive evaluation method was used to maintain the integrity of the polyethylene pipe. We simulated the various defects on the polyethylene pipes, and then the AE signal occurred according to the impact test of steel ball was evaluated by the acoustic emission method. From the results, the waveform and dominant frequency could be distinguishing from the defect shapes of polyethylene pipe. Especially, in the case of notch defect, the AE signals occur different by the angle and depth of the notch.

  • PDF