• Title/Summary/Keyword: Impact resistance test

Search Result 347, Processing Time 0.022 seconds

The Analysis of Thermal Conductivity and Basic Quality Performances of Decoration Wood-based Flooring Board Laminated with PVC Surface Decoration Materials (PVC 표면치장재를 적층한 치장목질마루판의 열특성 및 기초 품질성능 분석)

  • Park, Cheul-Woo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.53-60
    • /
    • 2018
  • For test on flooring board laminated with PVC decoration materials in order to replace the current surface materials such as HPL in decoration wood-based flooring board. the Results of comparison and analysis are as follows: For thermal conductivity, flooring board decorated with PVC did not show huge differences when temperature was rising and lowering compared to the flooring materials laminated with the existing HPL surface materials. It seems the most meaningful results for using it as indoor flooring materials. That is, in Korea where there is the culture focusing on ondol heating, use amount of heat energy and efficiency of flooring materials are very important and sensitive issues, involving immediately with household economy of final consumers, and it might be a criteria to judge basic performances required as flooring materials. As a result of the analysis on mandatory durability test items such as abrasion resistance, absorption width expansion rate, impact resistance, surface hardness, and impact absorption for flooring materials, compared to flooring board laminated with general HPL surface decoration materials, decoration wood-based flooring board laminated with PVC surface decoration materials which is higher abrasion resistance with smaller transformation and has better durability and impact absorption of the surface, is available for actual application as indoor flooring board, and for replacing surface decoration materials impregnated with heat-hardened resion such as HPL.

Prediction of ship resistance in level ice based on empirical approach

  • Jeong, Seong-Yeob;Choi, Kyungsik;Kang, Kuk-Jin;Ha, Jung-Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.613-623
    • /
    • 2017
  • A semi-empirical model to predict ship resistance in level ice based on Lindqvist's model is presented. This model assumes that contact between the ship and the ice is a case of symmetrical collision, and two contact cases are considered. Submersion force is calculated via Lindqvist's formula, and the crushing and breaking forces are determined by a concept of energy consideration during ship and ice impact. The effect of the contact coefficient is analyzed in the ice resistance prediction. To validate this model, the predicted results are compared with model test data of USCGC Healy and icebreaker Araon, and full-scale data of the icebreaker KV Svalbard. A relatively good agreement is achieved. As a result, the presented model is recommended for preliminary total resistance prediction in advance of the evaluation of the icebreaking performance of vessels.

An Effect of surface treatment on a Protection Ballistic Limits in armor material (표면처리가 장갑재료의 방호한계에 미치는 영향)

  • 손세원;김희재;이두성;홍성희;유명재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.126-134
    • /
    • 2003
  • In order to investigate the effect of surface treatment in Aluminium alloy and Titanium alloy which are used to armor material during ballistic impact, a ballistic testing was conducted. Anodizing was used to achieve higher surface hardness of Aluminium alloy and Iron plating in PVD(Physical Vapor Deposition) method was used to achieve higher surface hardness of Titanium alloy. Surface hardness test were conducted using a Micro victor's hardness tester. Ballistic resistance of these materials was measured by protection ballistic limit(V-50), a statical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed from the results of V-50 test and Projectile Through Plates (PTP) test at velocities greater than V-50. PTP tests were conducted with 0$^{\circ}$obliquity at room temperature using 5.56mm ball projectile. V-50 tests were conducted with 0$^{\circ}$obliquity at room temperature with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration. and penetration modes of surface treated alloy laminates are compared to those of surface non-treated alloy laminates. A high speed photography was used to analyze the dynamic perforation phenomena of the test materials.

Ballistic impact response of Kevlar Composites with filled epoxy matrix

  • Pekbey, Yeliz;Aslantas, Kubilay;Yumak, Nihal
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.191-200
    • /
    • 2017
  • Impact resistance and weight are important features for ballistic materials. Kevlar fibres are the most widely reinforcement for military and civil systems due to its excellent impact resistance and high strength-to-weight ratio. Kevlar fibres or spectra fiber composites are used for designing personal body armour to avoid perforation. In this study, the ballistic impact behaviour of Kevlar/filled epoxy matrix is investigated. Three different fillers, nanoclay, nanocalcite and nanocarbon, were used in order to increase the ballistic impact performance of Kevlar-epoxy composite at lower weight. The filler, nanoclay and nanocalcite, content employed was 1 wt.% and 2 of the epoxy resin-hardener mixture while the nanocarbon were dispersed into the epoxy system in a 0.5%, 1% and 2% ratio in weight relating to the epoxy matrix. Specimens were produced by a hand lay-up process. The results obtained from ballistic impact experiments were discussed in terms of damage and perforation. The experimental tests revealed a number of damage mechanisms for composite laminated plates. In the ballistic impact test, it was observed whether the target was perforated completely penetrated at the back or not. The presence of small amounts of nanoclay and nanocalcite dispersed into the epoxy system improved the impact properties of the Kevlar/epoxy composites. The laminates manufactured with epoxy resin filled by 1 wt.% of nanoclay and 2 wt% nanocalcite showed the best performance in terms of ballistic performance. The addition of nanocarbon reduced ballistic performance of Kevlar-epoxy composites when compared the results obtained for laminates with 0% nanoparticles concentration.

Evaluation of the Preirradiation Baseline Material Characteristics for Yonggwang Nuclear Reactor Pressure Vessel (영광 원자력 발전소 원자로 소재의 가동전 재료 물성 특성)

  • Kim, K.C.;Kim, J.T.;Suk, J.I.;Kwon, H.K.;Sung, U.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.153-158
    • /
    • 2000
  • Nuclear reactor pressure vessel should be safety even in the case that hypothetical defects with allowable size are in vessel. Therefore, the materials should have excellent fracture resistance characteristics. The purpose of this study is to analyze the results of preirradiation baseline test of nuclear pressure vessel for Yonggwang Unit 5/6. In experiments, drop weight tests and impact tests are carried out to obtain nil-ductility transition reference temperature, $RT_{NDT}$ and static and dynamic fracture toughness tests are performed to compare with $K_{IR}$ curve in accordance with ASME Sec.III. The test results show that the materials had sufficiently fracture resistance characteristics for 40 years of design life.

  • PDF

A Study on the high-velocity impact resistance of fiber reinforced metal laminate materials (섬유강화 금속 적층 재료의 고속 충격 저항성에 관한 연구)

  • 손세원;김영태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1378-1381
    • /
    • 2003
  • Recently, high-performance composite materials have been used for various industrial fields because of their superior high strength, high stiffness and lower weight. In this study, manufactured fiber reinforced metal laminate materials are composed of two parts. One is hard-anodized A15083-O alloy as a face material and the other is high strength aramid fiber (Twaron CT709) and polyethylene fiber(Dyneema HB25) laminates as a back-up material. Resistance to penetration is determined by protection ballistic limit(V$\sub$50/, a static velocity with 50% probability for complete penetration) test method. V$\sub$50/ tests with 0$^{\circ}$ obliquity at room temperature were conducted with 5.56mm ball projectiles that were able to achieve near or complete penetration during high velocity impact tests.

  • PDF

Impact Properties of S-2 Glass Fiber Composites with Multi-axial Structure (다축 구조 S-2 유리섬유 복합재의 충격 특성)

  • Song, S.W.;Lee, C.H.;Byun, J.H.;Hwang, B.S.;Um, M.K.;Lee, S.K.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.71-75
    • /
    • 2005
  • For the damage tolerance improvement of conventional laminated composites, stitching process have been utilized for providing through-thickness reinforcements. 2D preforms were stacked with S-2 glass plain weave and S-2 glass MWK (Multi-axial Warp Knit) L type. 3D preforms were fabricated using the stitching process. All composite samples were fabricated by RTM (Resin Transfer Molding) process. To examine the damage resistance performance the low speed drop weight impact test has been carried out. For the assessment of damage after the impact loading, specimens were examined by scanning image. CAI (Compressive After Impact) tests were also conducted to evaluate residual compressive strength. Compared with 2D composites, the damage area of 3D composites was reduced by 20-30% and the CAI strength showed 5-10% improvement.

  • PDF

Elucidating the mechanical behavior of ultra-high-strength concrete under repeated impact loading

  • Tai, Yuh-Shiou;Wang, Iau-Teh
    • Structural Engineering and Mechanics
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2011
  • The response of concrete to transient dynamic loading has received extensive attention for both civil and military applications. Accordingly, thoroughly understanding the response and failure modes of concrete subjected to impact or explosive loading is vital to the protection provided by fortifications. Reactive powder concrete (RPC), as developed by Richard and Cheyrezy (1995) in recent years, is a unique mixture that is cured such that it has an ultra-high compressive strength. In this work, the concrete cylinders with different steel fiber volume fractions were subjected to repeated impact loading by a split Hopkinson Pressure Bar (SHPB) device. Experimental results indicate that the ability of repeated impact resistance of ultra-high-strength concrete was markedly superior to that of other specimens. Additionally, the rate of damage was decelerated and the energy absorption of ultra-high-strength concrete improved as the steel fiber volume fraction increased.

The Design of a Hybrid Composite Strut Tower for Improving Impact Resistance and Light-weight (내충격성 향상 및 경량화를 위한 하이브리드 복합재료 스트럿 타워 설계)

  • Lee, Hyun Chul;Oh, Hyun Ju;Kim, Seong Su
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.223-229
    • /
    • 2013
  • Hybrid composite strut tower was designed to prevent permanent deformation of upper mount by the impact from the uneven road. When exceeding energy absorption capacity of tire and suspension systems, residual impact is delivered to upper mount. Especially, in case of using high-rigidity suspension system for high driving performance, the conventional strut tower can be easily deformed due to reduction of energy absorption capacity of suspension systems. In this study, optimal design of hybrid composite strut tower which made of back-up metal and carbon fiber reinforced composite was suggested by using finite element analysis, and low velocity impact test was performed to investigate their dynamic characteristics. Also, 3D measuring and ultra c-scanning methods were carried out to diagnose damages in the strut towers.

A Study on the Fracture Toughness Characteristics of FCAW Weldment of Steel for Offshore Structures (해양 구조물용 강재 FCAW 용접부의 파괴인성 특성에 관한 연구)

  • Kang Sung-Won;Kim Myung-Hyun;Kim Yong-Bin;Shin Yong-Taek;Lee Hae-Woo
    • Journal of Welding and Joining
    • /
    • v.22 no.6
    • /
    • pp.57-63
    • /
    • 2004
  • Fracture toughness is an important parameter in designing offshore structures to ensure resistance to fracture at various temperatures. In this study, a series of experiments is carried out to obtain fracture toughness values (CTOD) of API 2W Gr.50B, welded using FCAW(Flux Cored Arc Weld). In particular, a comparison of absorbed impact energy and CTOD values are made with respect to two different welding groove shapes; double-V-groove and double-bevel-groove. Charpy impact tests are performed for specimens sampled near the root gap, and CTOD tests are carried out for three point bending specimens having the notch at weld zone. While Charpy impact test result is determined to be a good qualitative measure of fracture toughness, no quantitative correspondence between impact absorbed energy and CTOD values was found. Based on the experiment, it is observed that double-V-groove welds give lower transition temperature than those of double-bevel-groove.