• Title/Summary/Keyword: Impact resistance

Search Result 1,037, Processing Time 0.029 seconds

Improvement of the Strength Properties and Impact Resistance of the Cement Composite Materials by the use of Surface Modification of the Aramid Fibers (아라미드섬유의 표면개질에 의한 시멘트 복합재료의 강도특성 및 내충격성능의 향상효과)

  • Nam, Jeong-Soo;Yoo, Jae-Chul;Kim, Gyu-Yong;Kim, Hong-Seop;Jeon, Joong-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.100-108
    • /
    • 2015
  • The purpose of this study is to evaluate the effect of improvement on the impact resistance and strength properties of cement composites by surface modification of aramid fiber. For aramid fiber reinforced cement composites, therefore, dispersion capability and the bonding efficiency between the fibers and the cement composite material need to be improved. It is possible by modifying surface properties to hydrophobic, it is considered that oiling agent ratio of 1.2 % and improvement of performance is in need to be investigated. In this study, short aramid fibers were mixed by different fiber length and oiling agent ratio. And improvement of strength properties and impact resistance performance of hybrid cement composites were evaluated under the influence of steel fiber. As a result, strength properties of aramid fiber reinforced cement composites are different by mixing ratio of fiber, oiling agent ratio and length of fiber. In case of cement composites which have same volume fraction and fiber length, tensile strength and flexural strength were improved with increase of the emulsions throughput of the fiber surface. The results of evaluation on the static strength properties had effects on impact resistance performance by high-velocity impact. And it was observed that the scabbing of rear was suppressed with increase of the oiling agent ratio.

A study on Improving the Level of Introduction of Smart Factories Using the Extended Innovation Resistance Model (확장된 혁신저항모델을 활용한 스마트 팩토리 도입 수준 제고에 대한 연구)

  • Park, Chan-Kwon
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.3
    • /
    • pp.107-124
    • /
    • 2021
  • This study is a study on the innovation resistance that may arise in connection with the introduction and use of smart factory-related technologies by SMEs. It is to study the effect of the leading factors of innovation resistance on innovation resistance and the effect of innovation resistance on use intention by using the extended innovation resistance model. A total of 176 survey data were used for the study, and the study was conducted using SPSS 25 and Smart PLS 2.0. Relative advantage, suitability, perceived risk, social impact, and organizational characteristics have a significant effect on innovation resistance, and innovation resistance was tested to have a significant effect on the intention to use. As an implication according to the research, a plan to improve the level of introduction and use of smart factories using the expanded innovative storage model was presented by dividing positive and negative factors, and factors that should be improved and factors that should be reduced are presented. It was specifically presented.

A basic study on Visual judgment method for the Dent of Lightweight wall surface (경량벽체 표면의 패임에 대한 시각적 판단방법에 관한 기초적 연구)

  • Kim, Jin-Sik;Shin, Yun-Ho;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.36-37
    • /
    • 2015
  • Recently, there has been a rapid increase in demand for lightweight walls for their use as interior partitions, as types of structure have gradually changed from shear wall structures to column structures or flat plate column wall systems. The lack of resisting force in lightweight walls is found by measuring the depth of dents in impact resistance tests, but it is not a direct factor of impact resistance. However, in the user's position, dents of over a certain size are clearly a factor that visually reminds the need for repair. In this study, we reviewed relative methods of assessment of the need for repair based on the visual means of determination (sensory test) on the dents on lightweight walls. Dents were found to stand out starting from depths of about 4mm, and the depth of roughly 5mm was found to be the criterion for determining the necessity of repair for men, while it was 4mm for women.

  • PDF

POLYPROPYLENE/CLAY NANOCOMPOSITES FOR AUTOMOTIVE APPLICATIONS

  • HONG C. H.;LEE Y. B.;JHO J. Y.;NAM B. U.;HWANG T. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.665-670
    • /
    • 2005
  • Nanocomposites of polypropylene with organically modified clays were compounded on a twin-screw extruder by two-step melt compounding of three components, i.e., polypropylene, maleic anhydride grafted polypropylene (PP-g-MA), and organically modified clay. The effect of PP-g-MA compatibilizers, including PH-200, Epolene-43, Polybond-3002, Polybond-3200, with a wide range of maleic anhydride (MA) content and molecular weight was examined. Morphologies of nanocomposites and their mechanical properties such as stiffness, strength, and impact resistance were investigated. X-ray diffraction patterns showed that the dispersion morphology of clay particles seemed to be determined in the first compounding step and the further dispersion of clays didn't occur in the second compounding step. As the ratio of PP-g-MA to clay increased, the clay particles were dispersed more uniformly in the matrix resin. As the dispersibility of clays was enhanced, the reinforcement effect of the clays increased, however impact resistance decreased.

A Study on the high velocity impact behavior of titanium alloy by PVD method (PVD처리한 티타늄 합금의 고속충격 거동에 관한 연구)

  • Sohn, Se-Won;Lee, Doo-Sung;Hong, Sung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.567-572
    • /
    • 2001
  • In order to investigate the fracture behaviors(penetration modes) and resistance to penetration during ballistic impact of Titanium alloy laminates and nitrified Titanium alloy laminates which were treated by PVD(Physical Vapor Deposition) method, ballistic tests were conducted. Evaporation, sputtering, and ion plating are three kinds of PVD method. In this research, Ion plating was used to achieve higher surface hardness and surface hardness test were conducted using a Micro vicker's hardness tester. Resistance to penetration is determined by the protection ballistic limit($V_{50}$), a statistical velocity with 50% probability for complete penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, are respectfully observed at and above ballistic limit velocities, as a result of $V_{50}$ test and Projectile Through Plates (PTP) test methods. PTP tests were conducted with $0^{\circ}$ obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ test with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during PTP tests. Surface hardness, resistance to penetration, and penetration modes of Titanium alloy laminates are compared to those of nitrified Titanium alloy laminates.

  • PDF

A Study on the Performance Experiments of Lightweight Wall of Long-life Housing by Ceiling Infill System (천장 인필시스템에 따른 장수명주택 경량벽체의 성능실험에 관한 연구)

  • Seo, Dong-Goo;Lee, Jong-Ho;Kim, Eun-Young;Hwang, Eun-Kyoung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.247-248
    • /
    • 2018
  • In order to secure the variability of long-life housing, dry walls are used. The composite gypsum board panel is the most frequently used infill system for the wall, and it is an excellent construction method in terms of constructability and economic feasibility. However, there are also problems such as the destruction of Ondol pipes at the bottom floor and being unable to fix the light weight steel frame (M-bar) when a variable composite gypsum board panel is used. To solve such problems, a wall with a method of fixing only the top part without fixing the bottom floor is developed, but it is difficult to identify the durability of ceiling frame according to the tensile force of stud and the safety according to the Stiffness and impact resistance (soft body) of ceiling frame. Therefore, this study verified the effectiveness of infill system for the wall by conducting experiment on the stiffness and impact resistance of composite gypsum board panel according to the reinforcement of ceiling frame (wooden frame, double saw-toothed bracket, Cross M-bar). As a result, it was possible to secure the safety of wooden frame while the impact resistance and the Stiffness of double saw-toothed bracket and cross M-bar were not secured.

  • PDF

Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites

  • Parhizkar, Mehran;Shelesh-Nezhad, Karim;Rezaei, Abbas
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.121-130
    • /
    • 2016
  • In an attempt to reach a balance of performances in homo-polypropylene based system, the effects of single and hybrid reinforcements inclusions comprising calcium carbonate nanoparticles (2, 4 and 6 phc) and glass fibers (10 wt.%) on the mechanical and thermal properties were investigated. Different samples were prepared by employing twin-screw extruder and injection molding machine. In morphological studies, the uniform distribution of glass fibers in PP matrix, relative adhesion between glass fibers and polymer, and existence of nanoparticles in polymer matrix were observed. $PP/CaCO_3$ (6 phc) as compared to pure PP and PP/GF had superior tensile and flexural strengths, impact resistance and deformation temperature under load (DTUL). $PP/GF/CaCO_3$ (6 phc) composite displayed comparable tensile and flexural strengths and impact resistance to neat PP, while its tensile and flexural moduli and deformation temperature under load (DTUL) were 436%, 99% and $26^{\circ}C$greater respectively. The maximum impact resistance was observed in $PP/CaCO_3$(6 phc). The highest DTUL was perceived in PP hybrid nanocomposite containing 10 wt.% glass fiber and 4 phc $CaCO_3$ nanoparticle.

A study on the fracture behavior of Ti/Al laminates under high velocity impact (고속충격을 받는 Ti/Al 적층재의 파괴거동에 관한 연구)

  • Sohn, Se-Won;Lee, Doo-Sung;Hong, Sung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.267-272
    • /
    • 2003
  • In order to investigate the effect of face material on Ti/Al alloy laminates under high velocity impact, a ballistic testing was conducted. Ballistic resistance of these materials was measured by protection ballistic limit($V_{50}$), a statistical velocity with 50% probability penetration. Fracture behaviors and ballistic tolerance, described by penetration modes, were respectfully observed, by $V_{50}$ test and Projectile Through Plates (PTP) test at velocities greater than $V_{50}$. PTP tests were conducted with $0^{\circ}$obliquity at room temperature using 5.56mm ball projectile. $V_{50}$ tests with $0^{\circ}$obliquity were also done with projectiles that were able to achieve near or complete penetration during PTP tests. Resistance to penetration, and penetration modes which face material was Titanium alloy, were compared to those which face material was anodized Al alloy after cold-rolling.

  • PDF

Hydrolysis Resistance and Mechanical Property Changes of Glass Fiber Filled Polyketone Composites Upon Glass Fiber Concentration

  • Kim, Sung Min;Kim, Kwang-Jea
    • Elastomers and Composites
    • /
    • v.52 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Hydrolysis resistance and mechanical property changes of polyketone (POK)/glass fiber (GF) composites were investigated for GF concentrations varying between 30 and 50%. The hydrolysis resistance of GF filled POK and polyamide66 (PA66, hydrolysis resistant grade) composites were compared. As shown by the experimental results, increasing the immersion time of the composites in a monoethylene glycol (MEG)/water solution at $120^{\circ}C$ had no impact or resulted in slightly decreased mechanical properties such as the tensile strength, tensile modulus, and strain at break in case of POK composites, whereas the mechanical properties of PA66 composites showed a significant drop. Increasing GF concentrations increased the tensile strength, tensile modulus, flexural strength, and flexural modulus of POK composites; however, impact strength did not show significant changes. Hydrolysis mechanisms of POK and PA66 are discussed.

The effection of alloying elements on welding characteristics of stainless steel (스테인리스강의 용접 특성에 미치는 합금원소의 영향)

  • 정호신;배동수;엄동석
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Stainless steel are widely applicable in various engineering fields for its exellent corrosion and impact ressistance. Austenitic weld metal has some ferrite for preventing solidification cracking by ASME specification. Several family of austenic stainless steel contains varying ferrite contents. But ferrite in austenic stainless steels is adversely affect weld metal toughness and since fully austenic grades are known to have good toughness. Austenic stainless steel has various alloying addition for improving corrosion resistance, impact toughness and solidification crack resistance. The effect of various alloying elements are not found to be clear in present. From this view of point, this study tried to establish the criteria of alloy design for austenic stainless steel by controlling primary solidification mode and clarifying the effect of several alloying elements.

  • PDF