• 제목/요약/키워드: Impact property

검색결과 731건 처리시간 0.367초

Effects of Mn and C Addition on the Wear Resistance for the Recycled WC Dispersed Fe-base Hardfacing Weld (재생 WC 분산형 Fe계 하드페이싱 용접재료의 마모저항성에 미치는 Mn과 C 첨가의 영향)

  • Kang, Nam-hyun;Chae, Hyun-byung;Kim, Jun-ki;Choi, Jong-ha;Kim, Jeong-han
    • Korean Journal of Materials Research
    • /
    • 제13권12호
    • /
    • pp.839-845
    • /
    • 2003
  • The abrasion and impact wear resistance were investigated on the hardfacing weld dispersed with the recycled hard metal(HM). The HM was composed of the tungsten carbide(WC) reinforced metal matrix composite. The cored wire filled with the 25-35wt.% HM and 2-8wt.% of the alloying element, Fe-75Mn- 7C(FeMnC), was used for the gas metal arc(GMA) welding. By using the cored wire of the 25wt.% HM and FeMnC addition, the weld showed mostly constant wear loss for the abrasion as a function of the FeMnC content. This was due to the insufficient amount of the tungsten carbide formed during the GMA welding. The FeMnC addition to the 35wt.% HM did not improve the abrasion wear property since the amount of the tungsten carbide formed was decreased with respect to the FeMnC amount. The 6wt.% FeMnC addition to the 35wt.% HM exhibited the better impact wear resistance than the hardfacing weld by 40wt.% HM.

Computational analysis of sandwich shield with free boundary inserted fabric at hypervelocity impact (비구속 삽입된 직물 섬유를 이용한 샌드위치 쉴드의 초고속 충격 해석)

  • Moon, Jin-Bum;Park, Yu-Rim;Son, Gil-Sang;Kim, Chun-Gon
    • Composites Research
    • /
    • 제24권3호
    • /
    • pp.31-38
    • /
    • 2011
  • In this paper, a novel hybrid composite shield to protect space structures from hypervelocity impact of micrometeoroid and space debris is proposed. The finite element model of the proposed shield was constructed and finite element analysis was conducted to approximate the energy absorption rate. Before the final model analysis, analysis of each component including the aluminum plate, PMMA plate, and intermediate layer of fabric was performed, verifying the finite element model of each component. The material properties used in the analyses were predicted material property values for high strain rates. The analysis results showed that, other than the fabric, the energy absorption rate of each component was in agreement. Afterwards, the finite element model of the hybrid composite shield was constructed, where it was analyzed for the restrained and unrestrained fabric boundary condition cases. Through the finite element analysis, the fiber pullout mechanism was realized for the hybrid shield with free boundary inserted fabric, and it was observed that this mechanism led to energy absorption increase.

Simulation Analysis on the Impact of Racing Car with Space Frame (스페이스 프레임을 가진 경주용 차량의 충돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Bang, Seung-Ok;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제11권7호
    • /
    • pp.2341-2348
    • /
    • 2010
  • In this paper, strain and stress on space frame are analyzed at racing car under crash loads. As the deformation is reduced to a minimum during crash and the vulnerable parts are grasped, the safety of driver is ensured. The vehicle frame is modelled with truss structure by inputting the material property of carbon steel on finite element analysis. The increase of impulse momentum is due to speed change at frontal collision. This influence effected on vehicle frame is also analyzed by ANSYS program. The deformation of the frame is studied by applying the crash loads at front, side and rear directions. Though the influence on the seat of driver is small at frontal and rear crash, the deformation due to impact is progressed into this seat. The safety of frame is enhanced by making up for these weak deformations and these results of simulation analysis can be applied to the production of the actual vehicle frame.

Experimental study on rock-coal-rock composite structure with different crack characteristics

  • Li, Tan;Chen, Guangbo;Li, Qinghai
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.377-390
    • /
    • 2022
  • The stability of the roof rock-coal pillar-floor rock composite structure is of great significance to coal mine safety production. The cracks existing in the composite structure seriously affect the stability of the roof rock-coal pillar-floor rock composite structure. The numerical simulation tests of rock-coal-rock composite structures with different crack characteristics were carried out to reveal the composite structures' mechanical properties and failure mechanisms. The test results show that the rock-coal-rock composite structure's peak stress and elastic modulus are directly proportional to the crack angle and inversely proportional to the crack length. The smaller the crack angle, the more branch cracks produced near the main control crack in the rock-coal-rock composite structure, and the larger the angle between the main control crack and the crack. The smaller the crack length, the larger the width of the crack zone. The impact energy index of the rock-coal-rock composite structure decreases first and then increases with the increase of crack length and increases with the increase of crack angle. The functional relationships between the different crack characteristics, peak stress, and impact energy index are determined based on the sensitivity analysis. The determination of the functional relationship can fully grasp the influence of the crack angle and the crack length on the peak stress and impact energy index of the coal-rock composite structure. The research results can provide a theoretical basis and guidance for preventing the instability and failure of the coal pillar-roof composite structure.

Low Impact Urban Development For Climate Change and Natural Disaster Prevention

  • Lee, Jung-Min;Jin, Kyu-Nam;Sim, Young-Jong;Kim, Hyo-Jin
    • International conference on construction engineering and project management
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.54-55
    • /
    • 2015
  • Increase of impervious areas due to expansion of housing area, commercial and business building of urban is resulting in property change of stormwater runoff. Also, rapid urbanization and heavy rain due to climate change lead to urban flood and debris flow damage. In 2010 and 2011, Seoul had experienced shocking flooding damages by heavy rain. All these have led to increased interest in applying LID and decentralized rainwater management as a means of urban hydrologic cycle restoration and Natural Disaster Prevention such as flooding and so on. Urban development is a cause of expansion of impervious area. It reduces infiltration of rain water and may increase runoff volume from storms. Low Impact Development (LID) methods is to mimic the predevelopment site hydrology by using site design techniques that store, infiltrate, evaporate, detain runoff, and reduction flooding. Use of these techniques helps to reduce off-site runoff and ensure adequate groundwater recharge. The contents of this paper include a hydrologic analysis on a site and an evaluation of flooding reduction effect of LID practice facilities planned on the site. The region of this Case study is LID Rainwater Management Demonstration District in A-new town and P-new town, Korea. LID Practice facilities were designed on the area of rainwater management demonstration district in new town. We performed analysis of reduction effect about flood discharge. SWMM5 has been developed as a model to analyze the hydrologic impacts of LID facilities. For this study, we used weather data for around 38 years from January 1973 to August 2014 collected from the new town City Observatory near the district. Using the weather data, we performed continuous simulation of urban runoff in order to analyze impacts on the Stream from the development of the district and the installation of LID facilities. This is a new approach to stormwater management system which is different from existing end-of-pipe type management system. We suggest that LID should be discussed as a efficient method of urban disasters and climate change control in future land use, sewer and stormwater management planning.

  • PDF

Evaluation of the Basic Property Evaluation of Eco-powder, a Hydrothermal Synthesis Product for Improving Waste Vinyl Recycling Efficiency (농촌 폐비닐 활용률 제고를 위한 수열합성 생성물인 에코 파우더(Eco-powder)의 기초물성 평가)

  • Sun-Mi Choi;Min-Chul Lee;Jin-Man Kim;Young-Gon Son;Nam-Ho Kim
    • Resources Recycling
    • /
    • 제33권1호
    • /
    • pp.48-57
    • /
    • 2024
  • This study aimed to improve utilization of the Class C vinyl waste generated in rural areas based on a preliminary investigation on the use of eco-powder, generated through pyrolysis, as a raw material for plastic. The efficiency of pre-processing treatments in controlling ash content of the generated eco-powder and its effect on the basic properties of manufactured plastic were evaluated. The basic properties included ash content of the compressed eco-powder at different levels of ash content, impact strength, flexural strength, and tensile strength. The experimental results confirmed that pre-processing improved the separation efficiency of soil particles and vinyl waste through physical impact. The eco-powder with ash content of less than or equal to 26% was found to satisfy the target performance during impact strength, flexural strength, and tensile strength evaluation. Thus, it was confirmed that the Class C vinyl waste, having low utilization and recovery rates, could be effectively utilized as a plastic raw material after optimum thermal treatment and physical processing using the eco-powder.

Study on Impact Properties of Polyamide 12 depending on Temperature by Selective Laser Sintering Process (선택적 레이저 소결 공정 적용 폴리아미드 12의 온도별 충격 특성에 관한 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제19권10호
    • /
    • pp.136-142
    • /
    • 2018
  • Additive manufacturing process technology, known as the 3D printing process, is expanding its utilization from simple model realization to commercialized part production based on continuous material development. Recently, research and development have been actively carried out to fabricate lightweight and high-strength parts using polymers, such as polyamide (polyamide), which is a high-strength engineering plastic material. In this study, the Izod impact characteristics were analyzed for polyamide 12 (PA12) materials. For the specimen production, selective laser sintering process technology, which has excellent mechanical properties of finished products, was applied. In addition, PA12 and glass bead reinforced PA12 materials were produced. The specimens were classified according to the production direction on the production platform, and each specimen was subjected to an Izod test at test temperatures of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, the impact strength of PA12 and glass bead-reinforced PA12 of vertical direction specimens were 48.8% and 16.3% lower than those of the parallel specimens at a $25^{\circ}C$ test temperature and the impact strength of parallel specimens was improved by 46.5% and 20.4% at a test temperature of $60^{\circ}C$ compared to that at $-25^{\circ}C$.

Numerical Analysis of Crash Impact Test for External Auxiliary Fuel Tank of Rotorcraft (회전익항공기용 외부 보조연료탱크 충돌충격시험 수치해석)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • 제18권3호
    • /
    • pp.724-729
    • /
    • 2017
  • The crashworthiness of the fuel tank of a rotorcraft is verified through the crash impact test. The crash impact test has a high risk of failure due to the application of an excessive load, which can seriously affect the overall development schedule of the aircraft. Therefore, a lot of effort has been made to minimize the possibility of failure in the actual test by carrying out a numerical analysis of the crash impact test of the fuel tank in the initial design stage. Recently, an external auxiliary fuel tank was added to increase the cruising distance. In this study, the numerical analysis results of the crash impact test based on several different shapes of the external auxiliary fuel tank are presented, in order to evaluate its crashworthiness. For the numerical analysis, smoothed particle hydrodynamics (SPH), which is one of the fluid-structure coupled analysis methods, is applied and the test conditions prescribed by US military standards are reflected in the analysis conditions. In addition, the material property data previously obtained by the specimen test of the actual fuel tank is applied to the numerical analysis. As a result, the equivalent stress of the fuel tank material itself and the metal fitting is provided and the possibility of acquiring data for designing the crash-worthiness of the external auxiliary fuel tank is evaluated by examining the behavior and working load of the internal mounted components.

Impact Properties and Fractography of Structural Materials for LNG Tank at Cryogenic Temperatures (LNG 저장탱크용 재료의 극저온 충격특성과 파면해석)

  • Shin Hyung-Seop;Lee Hae-Moo;Shin Ju-Yeong;Park Jong-Seo
    • Journal of the Korean Institute of Gas
    • /
    • 제2권1호
    • /
    • pp.99-106
    • /
    • 1998
  • In order to investigate the impact properties of structural materials for LNG tank, instrumented Charpy impact tests were carried out at cryogenic temperatures. $9\%$ Ni steel showed a superior fracture resistance because of less degradation in toughness until 77 K. From the load-deflection curve obtained by an instrumented methods it was found that with the decrease of temperature from 173 K to 77 K, the peak load in the curve increased, but the total absorbed energy decreased. In addition, the energy absorbed during the crack growth was larger than one absorbed in the process of crack initiation. In SUS304L material, the energy absorbed in the process of the crack initiation was relatively large, but the energy absorbed in the process of crack growth was small, the behavior of absorbed energy was well agreed with the observations of the fracture surface which showed a relatively smooth fracture surface. The absorbed Charpy impact energy in the case of A5083 alloy was lower as compared with other steels, and some cracks were observed along the crack propagation direction at the fracture surface of 77 K.

  • PDF

Peak Impact Force of Ship Bridge Collision Based on Neural Network Model (신경망 모델을 이용한 선박-교각 최대 충돌력 추정 연구)

  • Wang, Jian;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • 제28권1호
    • /
    • pp.175-183
    • /
    • 2022
  • The collision between a ship and bridge across a waterway may result in extremely serious consequences that may endanger the safety of life and property. Therefore, factors affecting ship bridge collision must be investigated, and the impact force should be discussed based on various collision conditions. In this study, a finite element model of ship bridge collision is established, and the peak impact force of a ship bridge collision based on 50 operating conditions combined with three input parameters, i.e., ship loading condition, ship speed, and ship bridge collision angle, is calculated via numerical simulation. Using neural network models trained with the numerical simulation results, the prediction model of the peak impact force of ship bridge collision involving an extremely short calculation time on the order of milliseconds is established. The neural network models used in this study are the basic backpropagation neural network model and Elman neural network model, which can manage temporal information. The accuracy of the neural network models is verified using 10 test samples based on the operating conditions. Results of a verification test show that the Elman neural network model performs better than the backpropagation neural network model, with a mean relative error of 4.566% and relative errors of less than 5% in 8 among 10 test cases. The trained neural network can yield a reliable ship bridge collision force instantaneously only when the required parameters are specified and a nonlinear finite element solution process is not required. The proposed model can be used to predict whether a catastrophic collision will occur during ship navigation, and thus hence the safety of crew operating the ship.