• Title/Summary/Keyword: Impact pathway

Search Result 176, Processing Time 0.033 seconds

Assessment of Anti-Drought Capacity for Agricultural Reservoirs using RCP Scenarios (RCP 시나리오 기반 농업용 저수지의 내한능력 평가)

  • Park, Na-Young;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.13-24
    • /
    • 2013
  • Agriculture is affected directly by climate conditions and changes, and it is necessary to understand the impact of climate change on agricultural reservoirs which are the main water resources for paddy fields in Korea. This study aimed to evaluate the impact of climate change on the anti-drought capacity including water supply capability (WSC) and drought response ability (DRA) of agricultural reservoirs based on RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios of CanESM2 (The Second Generation Earth System Model) provided by CCCma (Canadian Center for Climate Modeling and Analysis). The WSC and DRA were estimated using frequency analysis and runs theory. The six reservoirs (Yooshin, Nogok, Kumsung, Songgok, Gapyung, Seoma) were selected considering geographical characteristics and design criteria of reservoir capacity. In case of Seoma reservoir, more than 10 year drought return period (DRP), the variation of the WSC was estimated larger than the others. In case of Yooshin reservior (2~5 DRP) DRC was decreased in 2025s under RCP8.5. These results could be utilized for agricultural reservoirs management and future design criteria considering climate change impacts on paddy irrigation.

Prediction of sediment flow to Pleikrong reservoir due to the impact of climate change

  • Xuan Khanh Do;ThuNgaLe;ThuHienNguyen
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.38-38
    • /
    • 2023
  • Pleikrong reservoir with a concrete gravity dam that impound more than 1 billion cubic meter storage volume is one of the largest reservoir in Central Highland of Vietnam. Sedimentation is a major problem in this area and it becomes more severe due to the effect of climate change. Over time, it gradually reduces the reservoir storage capacity affecting to the reliability of water and power supply. This study aims to integrate the soil and water assessment tool (SWAT) model with 14 bias-corrected GCM/RCM models under two emissions scenarios, representative concentration pathway (RCP) 4.5 and 8.5 to estimate sediment inflow to Pleikrong reservoir in the long term period. The result indicated that the simulated total amount of sediment deposited in the reservoir from 2010 to 2018 was approximately 39 mil m3 which is a 17% underestimate compared with the observed value of 47 mil m3. The results also show the reduction in reservoir storage capacity due to sedimentation ranges from 25% to 62% by 2050, depending on the different climate change models. The reservoir reduced storage volume's rate in considering the impact of climate change is much faster than in the case of no climate change. The outcomes of this study will be helpful for a sustainable and climate-resilient plan of sediment management for the Pleikrongreservoir.

  • PDF

The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

  • Lee, Chang-Hoon;Lee, Kyoung-Hee;Jang, An-Hee;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Background: Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods: Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results: Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion: The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions.

Regulation of $Ca^{2+}$ Signaling in Pulmonary Hypertension

  • Firth, Amy L.;Won, Jun Yeon;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Understanding the cellular and molecular mechanisms involved in the development and progression of pulmonary hypertension (PH) remains imperative if we are to successfully improve the quality of life and life span of patients with the disease. A whole plethora of mechanisms are associated with the development and progression of PH. Such complexity makes it difficult to isolate one particular pathway to target clinically. Changes in intracellular free calcium concentration, the most common intracellular second messenger, can have significant impact in defining the pathogenic mechanisms leading to its development and persistence. Signaling pathways leading to the elevation of $[Ca^{2+}]_{cyt}$ contribute to pulmonary vasoconstriction, excessive proliferation of smooth muscle cells and ultimately pulmonary vascular remodeling. This current review serves to summarize the some of the most recent advances in the regulation of calcium during pulmonary hypertension.

Metabolomic Response of Chlamydomonas reinhardtii to the Inhibition of Target of Rapamycin (TOR) by Rapamycin

  • Lee, Do Yup;Fiehn, Oliver
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.923-931
    • /
    • 2013
  • Rapamycin, known as an inhibitor of Target of Rapamycin (TOR), is an immunosuppressant drug used to prevent rejection in organ transplantation. Despite the close association of the TOR signaling cascade with various scopes of metabolism, it has not yet been thoroughly investigated at the metabolome level. In our current study, we applied mass spectrometric analysis for profiling primary metabolism in order to capture the responsive dynamics of the Chlamydomonas metabolome to the inhibition of TOR by rapamycin. Accordingly, we identified the impact of the rapamycin treatment at the level of metabolomic phenotypes that were clearly distinguished by multivariate statistical analysis. Pathway analysis pinpointed that inactivation of the TCA cycle was accompanied by the inhibition of cellular growth. Relative to the constant suppression of the TCA cycle, most amino acids were significantly increased in a time-dependent manner by longer exposure to rapamycin treatment, after an initial down-regulation at the early stage of exposure. Finally, we explored the isolation of the responsive metabolic factors into the rapamycin treatment and the culture duration, respectively.

Open reduction and internal fixation of metacarpal fractures using a thermoplastic splint as a surgical instrument

  • Papavasiliou, Theodora;Park, Paul Dain;Tejero, Ricardo;Allain, Niklaas;Uppal, Lauren
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.384-388
    • /
    • 2021
  • Adequate positioning of the hand is a critical step in hand fracture operative repair that can impact both the clinical outcome and the efficiency of the operation. In this paper, we introduce the use of a thermoplastic splint with an added thumb stabilizing component as a means to increase the surgeon's autonomy and to streamline the patient care pathway. The thermoplastic splint is custom fabricated preoperatively by the specialist hand therapist. The splint is used prior, during, and post operation with minimal modification. The thumb component assists maintaining the forearm in a stable pronated position whilst drilling and affixing metal work. This is demonstrated in the video of removal of metal work and open reduction and internal fixation of a metacarpal fracture.

On dynamic flight response of golf ball containing nanoparticles for improving quality

  • Yuwei Du;Guowen Ai;M. Kaffash
    • Advances in nano research
    • /
    • v.15 no.6
    • /
    • pp.579-585
    • /
    • 2023
  • This research delves into the intricate dynamics of the flight response exhibited by a golf ball that incorporates nanoparticles with the goal of enhancing its overall quality. The golf ball is meticulously modeled utilizing beam elements, and the impact of nanoparticles is intricately captured through the application of the Halpin-Tsai theory. Employing a numerical solution, the study thoroughly explores the flight response of the golf ball, taking into account the nuanced effects of the embedded nanoparticles. By scrutinizing the aerodynamic characteristics through advanced simulations, this investigation aims to provide valuable insights that could potentially revolutionize the design and performance of golf equipment, offering a pathway towards superior quality and enhanced functionality in the realm of golf ball technology. Results show that increase in the volume percent of nanoparticles, improves the flight response of the golf ball.

Comparison of Heavy Metal Pollutant Exposure and Risk Assessments in an Abandoned Mine Site (폐광산 주변 토양 중금속 오염노출농도 우려기준과 위해성 비교 연구)

  • Choi, Jinwon;Yoo, Keunje;Koo, Myungseo;Park, Joon-Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4B
    • /
    • pp.261-266
    • /
    • 2012
  • In this study, soil environmental impact assessment using risk-based approach was compared with that using concentration-based approach. For this, heavy metal contaminant exposure was characterized in an abandoned mine area. According to the estimated carcinogenic and non-carcinogenic risks, soil ingestion was identified as the most dominant exposure pathway. When contaminant concentrations exceeded the Korean Soil Contamination Warning Standards, their corresponding risk values also exceeded the Total Soil Risk Standard. Even the cases of satisfying the Korean Soil Contamination Warning Standards mostly showed higher risk levels than the Total Soil Risk Standard, re-confirming a more sensitivity of the risk-based assessment than concentration-based assessment. However, the in-depth analysis of the estimated non-carcinogenic risk values revealed a few cases for soil contact pathway showing contaminant concentrations higher than the Korean Soil Contamination Warning Standards although their non-carcinogenic risk values satisfied the level of Hazard Index Standard. The findings from this study support a necessity of shifting policy paradigm from concentration-based approach into risk-based approach for reliable risk assessment in abandoned mine areas, and also suggest a necessity of further fundamental studies regarding risk factors and standards.

MDM2 T309G has a Synergistic Effect with P21 ser31arg Single Nucleotide Polymorphisms on the Risk of Acute Myeloid Leukemia

  • Ebid, Gamal T.;Sedhom, Iman A.;El-Gammal, Mosaad M.;Moneer, Manar M.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4315-4320
    • /
    • 2012
  • Background: The P53 tumor suppressor gene plays a pivotal role in maintaining cellular homeostasis by preventing the propagation of genome mutations. P53 in its transcriptionally active form is capable of activating distinct target genes that contribute to either apoptosis or growth arrest, like P21. However, the MDM2 gene is a major negative regulator of P53. Single nucleotide polymorphisms (SNP) in codon Arg72Pro of P53 results in impairment of the tumor suppressor activity of the gene. A similar effect is caused by a SNP in codon 31 of P21. In contrast, a SNP in position 309 of MDM2 results in increased expression due to substitution of thymine by guanine. All three polymorphisms have been associated with increased risk of tumorigenesis. Aim of the study: We aimed to study the prevalence of SNPs in the P53 pathway involving the three genes, P53, P21 and MDM2, among acute myeloid leukemia (AML) patients and to compare it to apparently normal healthy controls for assessment of impact on risk. Results: We found that the P21 ser31arg heterozygous polymorphism increases the risk of AML (P value=0.017, OR=2.946, 95% CI=1.216-7.134). Although the MDM2 309G allele was itself without affect, it showed a synergistic effect with P21 ser/arg polymorphism (P value=0.003, OR=6.807, 95% CI=1.909-24.629). However, the MDM2 309T allele abolish risk effect of the P21 polymorphic allele (P value=0.71). There is no significant association of P53 arg72pro polymorphism on the risk of AML. Conclusion: We suggest that SNPs in the P53 pathway, especially the P21 ser31arg polymorphism and combined polymorphisms especially the P21/MDM2 might be genetic susceptibility factors in the pathogenesis of AML.

Hydrogen Surface Coverage Dependence of the Reaction between Gaseous and Chemisorbed Hydrogen Atoms on a Silicon Surface

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.205-214
    • /
    • 2002
  • The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. Especially, we have focused on the mechanism changes with the hydrogen surface coverage difference. On the sparsely covered surface, the gas atom interacts with the preadsorbed hydrogen atom and adjacent bare surface sites. In this case, it is shown that the chemisorption of H(g) is of major importance. Nearly all of the chemisorption events accompany the desorption of H(ad), i.e., adisplacement reaction. Although much less important than the displacement reaction, the formation of $H_2(g)$ is the second most significant reaction pathway. At gas temperature of 1800 K and surface temperature of 300 K, the probabilities of these two reactions are 0.750 and 0.065, respectively. The adsorption of H(g) without dissociating H(ad) is found to be negligible. In the reaction pathway forming $H_2$, most of the reaction energy is carried by $H_2(g)$. Although the majority of $H_2(g)$ molecules are produced in sub-picosecond, direct-mode collisions, there is a small amount of $H_2(g)$ produced in multiple impact collisions, which is characteristic of complex-mode collisions. On the fully covered surface, it has been shown that the formation of $H_2(g)$ is of major importance. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. At gas temperature of 1800 K and surface temperature of 300 K, the probability of the $H_2(g)$ formation reaction is 0.082. In this case, neither the gas atom trapping nor the displacement reaction has been found.