• 제목/요약/키워드: Impact of Droplets

검색결과 46건 처리시간 0.024초

액적의 리바운드 모션에 주목한 분무냉각 막비등 열전달 모델 (Film Boiling Heat Transfer Model of Spray Cooling Focusing on Rebound Motion of Droplets)

  • 김영찬
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1317-1322
    • /
    • 2004
  • In this report, the heat transfer model of spray cooling on hot surface was developed by focusing on the effect of rebound motion of droplets. In the model, it was assumed that droplets rebound repeatedly on the hot surface and heat transfer upon droplet impact is proportional to sensible heat which heats up the droplets to the saturation temperature. In addition, to take account of the contribution of th heat flux upon impact of rebound droplets, it was assumed that the rebound droplets are distributed following the Gaussian distribution from 0 to L, which distance L is determined by maximum flight distance $L_{max}$. Also the calculated results were compared with existing experimental results.

  • PDF

SiO2 나노입자 현탁액의 충돌 및 퍼짐에 관한 실험적 연구 (Experimental study on impact and spreading of SiO2 nanoparticle colloidal suspension droplets)

  • 허형규;이상준
    • 한국가시화정보학회지
    • /
    • 제11권3호
    • /
    • pp.12-16
    • /
    • 2013
  • The impact and spreading behaviors of silicon dioxide nanoparticle colloidal suspension droplets were quantitatively visualized using a high-speed imaging system. Millimeter-scale droplets were generated by a syringe pump and a needle. Droplets of different velocity were impacted on a non-porous solid surface. Images were consecutively recorded using a CMOS high-speed camera at 5000 fps (frames per second) for millimeter-scale droplets. Temporal variations of droplet diameter, velocity and maximum spreading diameters were evaluated from the sequential images captured for each experimental condition. Effects of Reynolds number, Weber number, and particle concentration were investigated experimentally.

고온벽과 충돌하는 나노유체 액적 거동에 관한 연구 (A Study on the Behavior of Nano-fluid Droplet Impacting Upon a Hot Surface)

  • 김으뜸;박인한;배녹호;강보선
    • 한국분무공학회지
    • /
    • 제20권1호
    • /
    • pp.7-13
    • /
    • 2015
  • In this study, the behavior of water or nanofluid droplets impacting upon a hot surface was investigated by visualization of impacting phenomena with time-delayed photographic technique. Changing the mass ratio of nanofluid and the temperature of the heated surface, the characteristics of the spreading behavior and the diameter of spreading liquid film was compared between water and nanofluid droplets. The impacting droplet spreaded as a liquid film after impact and nanofluid droplets spreaded more widely than water droplets. After reaching the maximum diameter, water droplets shrinked more than nanofluid droplets. Based on this, the heat transfer area from a hot surface to impacting nanofluid droplets would be wider than that of impacting water droplets. Considering individual impacting droplet only, spray cooling using nanofluid would be better than using water.

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

수직벽으로 연속 충돌하는 액적들의 비산/잔류 동적 거동 가시화 및 분석 연구 (Visualization and Analysis of the Dynamic Behavior of Splashes and Residuals of Droplets Continuously Colliding with a Vertical Wall)

  • 노재현;이훈석;박태영;김승호
    • 한국가시화정보학회지
    • /
    • 제22권2호
    • /
    • pp.82-89
    • /
    • 2024
  • In this study, experiments were conducted to visualize and analyze the dynamic characteristics of splash and residual liquid film formation during and after the injection of water droplets onto vertically situated solid substrates with varying surface wettability, elasticity, and microtexture. As wettability decreased (higher contact angle), more splash droplets formed, and the residual liquid film decreased. Low contact angles resulted in thin residual films and less splash. Surface elasticity absorbed the impact forces of droplets, thereby decreasing splash phenomena and significantly reducing the formation of residual liquid films due to surface vibration. Surfaces with microtextures demonstrated control over droplet splash direction, guiding the liquid along desired pathways. High-speed imaging provided detailed insights, showing that surface properties critically influence splash dynamics and residual liquid film formation.

Molecular Dynamics Study on the Binary Collision of Nanometer-Sized Droplets of Liquid Argon

  • Chun, In-Beom;Ha, Man-Yeong;Jang, Joon-Kyung;Yoon, Hyun-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권6호
    • /
    • pp.2027-2031
    • /
    • 2011
  • Molecular dynamics simulation is used to study the binary collisions of nanometer-sized droplets of argon in the presence of a surrounding gas. By systematically varying the droplet size, the impact parameter and the velocity of collision, the outcome of such collisions were examined and they can be classified into coalescence, separation and shattering. If one of the colliding droplets is half or less than the other in diameter, a shattering is not possible to occur. The threshold of impact parameter for a given separation was studied by adjusting the Weber number. Overall nanoscale droplets were more likely to coalesce than the macroscopic sized ones due to their high surface-to-volume ratio.

GMAW에서 용적입사를 고려한 용융지 유동 및 형상해석 (Analysis of Weld Pool Flow and Shape Considering the Impact of Droplets in GMAW)

  • 박현성;이세현;엄기원
    • Journal of Welding and Joining
    • /
    • 제16권2호
    • /
    • pp.40-47
    • /
    • 1998
  • In the present study, depressions of the GMA weld pool due to the impact of droplet are numerically investigated. The numerical simulation is conducted on the basis of the Navier-Stokes equation and the volume of fluid(VOF) functions. The kinetic energy of transferring droplet makes a depression of the weld pool surface. The surface active element affects the depression of the weld pool. The droplets transferred efficiently to the bottom of the weld pool, along with electromagnetic force make the finger shape penetration at the high current GMAW.

  • PDF

Numerical Simulation of Solution Droplets and Falling Films in Horizontal Tube Absorbers

  • Phan Thanh-Tong;Lee Ho-Saeng;Yoon Jung-In;Kim Eun-Pil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권5호
    • /
    • pp.597-607
    • /
    • 2006
  • This paper presents a numerical simulation of the behavior of the LiBr solution droplets and falling films in horizontal tube banks of absorber. The model developed here accounts for the details of the droplets formation and impact process for absorption on horizontal tubes including the heat transfer from solution film to the tube wall. Especially. the characteristic of unsteady behavior of solution flow has been investigated. Flow visualization studies shown that the solution droplets and falling films have some of the complex characteristics. It is found that. with the numerical conditions similar to the operating condition of an actual absorption chiller/heater, the outlet solution temperature and heat flux from solution film to the tube wall have a stable periodic behavior with time. The solution droplets and falling films in horizontal tube banks of absorber is a periodic unsteady flow. The results from this model are compared with previous experimental observation taken with a high-speed digital video camera and shown good agreement.

Level Set 방법을 이용한 액적 충돌 현상에 대한 수치해석 (A Numerical Analysis on the Binary Droplet Collision with the Level Set Method)

  • 이상혁;허남건
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.559-564
    • /
    • 2008
  • A prediction of binary droplets collision is important in the formation of falling drops and the evolution of sprays. The droplet velocity, impact parameter and drop-size ratio have influence on the interaction of the droplets. By the effect of these parameter, the collision processes are generated with the complicated phenomena. The droplet collision can be classified into four interactions such as the bouncing, coalescence, reflexive separation and stretching separation. In this study, the two-phase flow of the droplet collision was simulated numerically by using the Level Set method. 2D axi-symmetric simulations on the head-on collisions in the coalescence and reflexive separation, and 3D simulation on the off-center collisions in the coalescence and stretching separation were performed. These numerical results showed good agreements with the experimental and analytical results. For tracking the identity of droplets after the collision, transport equation for the volume fraction of the each initial droplet were used. From this, the identities of droplets were analyzed on the collision of droplets having different size.

  • PDF