• Title/Summary/Keyword: Impact life time

Search Result 508, Processing Time 0.032 seconds

Prediction of Impact Life Time in Solder Balls of the Board Level Flip Chips by Drop Simulations (낙하해석을 통한 보드 레벨 플립칩에서의 솔더볼 충격수명에 관한 연구)

  • Jang, Chong Min;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.237-242
    • /
    • 2014
  • Recently much research are has been done into the compositions of lead-free solders. As a result, there has been a rapid increase in the number of new compositions. In the past, the properties of these new compositions were determined and verified through drop-impact tests. However, these drop tests were expensive and it took a long time to obtain a result. The main goal of this study was to establish an analytical method capable of predicting the impact life-time of a new solder composition for board-level flip chips though the application of drop simulations using LS-DYNA. Based on the reaction load obtain with LS-DYNA, the drop-impact fracture cycles were predicted. The study was performed using a Sn-3.0Ag-0.5Cu solder (305 composition). To verify the reliability of the proposed analytical method, the results of the drop-impact tests and life-time analysis were compared, and were found to be in good agreement. Thus, the new analytical method was shown to be very useful and effective.

Applying a Life-Cycle Assessment to the Ultra Pure Water Process of Semiconductor Manufacturing

  • Tien, Shiaw-Wen;Chung, Yi-Chan;Tsai, Chih-Hung;Yang, Yung-Kuang;Wu, Min-Chi
    • International Journal of Quality Innovation
    • /
    • v.6 no.3
    • /
    • pp.173-189
    • /
    • 2005
  • A life-cycle assessment (LCA) is based on the attention given to the environmental protection and concerning the possible impact while producing, making, and consuming products. It includes all environmental concerns and the potential impact of a product's life cycle from raw material procurement, manufacturing, usage, and disposal (that is, from cradle to grave). This study assesses the environmental impact of the ultra pure water process of semiconductor manufacturing by a life-cycle assessment in order to point out the heavy environmental impact process for industry when attempting a balanced point between production and environmental protection. The main purpose of this research is studying the development and application of this technology by setting the ultra pure water of semiconductor manufacturing as a target. We evaluate the environmental impact of the Precoat filter process and the Cation/Anion (C/A) filter process of an ultra pure water manufacturing process. The difference is filter material used produces different water quality and waste material, and has a significant, different environmental influence. Finally, we calculate the cost by engineering economics so as to analyze deeply the minimized environmental impact and suitable process that can be accepted by industry. The structure of this study is mainly combined with a life-cycle assessment by implementing analysis software, using SimaPro as a tool. We clearly understand the environmental impact of ultra pure water of semiconductor used and provide a promotion alternative to the heavy environmental impact items by calculating the environmental impact during a life cycle. At the same time, we specify the cost of reducing the environmental impact by a life-cycle cost analysis.

Electric Current Accelerated Degradation Test Design for OLED TV (OLED TV Panel의 전류가속열화시험 설계)

  • You, Ji-Sun;Lee, Duek-Jung;Oh, Chang-Suk;Jang, Joong Soon
    • Journal of Applied Reliability
    • /
    • v.17 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Purpose: The purpose of this study is to estimate the life time of OLED TV panel through electric current ADT(Accelerated Degradation Test). Methods: We performed accelerated degradation test for OLED TV Panel at the room temperature to avoid high temperature impact on the luminance. Results: we got more accurately the life time of the OLED TV when we applied ADT without temperature factor than including both current and temperature. Conclusion: Until now, the ADT of the OLED TV has been conducted with temperature and current at the same time for reducing test time and costs. We estimate incorrect life time when the temperature is adopted as an accelerated factor. Due to the high temperature impact on the luminance of the OLED TV panel. So as to solve this problem, we discard temperature and use electric current only.

A Study on the Impact Factor of Bridges (교량의 충격계수에 관한 연구)

  • Youn, IIro;Ryu, Taek-Eun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.161-166
    • /
    • 2004
  • The impact factor of bridges is analyzed based on experimental data to examine the characteristics of the dynamic responses of bridges. The experimental impact factors are compared with the impact factor of Korean Highway Design Specification and Japan T-load in terms of the span length. According to the superstructural types of bridges, the variation of the impact factor is analyzed. When vehicles are passing on a bridge, the dynamic effect acts on the bridge impact factor more than at the time of design because of the velocity of vehicles, the surface roughness reduction due to the deterioration of the bridge deck pavement, and the disconnection of the bridge entrance and the expansion joint. Because the actual value is greater than the expected value at the time of design, the dynamic response of the bridge accelerates the deterioration of the bridge due to the accumulation of fatigue, and the bridge's life-time is shortened and can have an influence on the serviceability and safety of the bridge.

  • PDF

The Effect of Zimbardo's Time Perspective and Life Satisfaction on Organizational SNS Attitude and Word-of-Mouth Effect (짐바르도 시간관과 삶의 만족도가 기관 SNS 태도 및 구전효과에 미치는 영향)

  • Lee, Jin Kyun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.10
    • /
    • pp.114-131
    • /
    • 2022
  • The goal of this study is to examine the impact of time perspective and life satisfaction of government and public institution employees on organizational SNS attitude and word-of-mouth effect. A total of 136 incumbent employees participated in this online survey. It was found that past-positive, present-hedonistic, and future time perspective positively affected life satisfaction and the organizational SNS attitude. Meanwhile past-negative time perspective negatively affected life satisfaction only, present-fatalistic time perspective did not negatively affect life satisfaction and organizational SNS attitude. Finally, life satisfaction showed a positive impact on word-of-mouth effect via organizational SNS attitude. By identifying psychological underpinnings of time perspective and life satisfaction, this study will provide theoretical and practical implications regarding internal communication and the effective management of government and public institution-operated SNS.

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : Life Cycle Assessment for Environmental Load of Chemical Products using Probabilistic Health Risk Analysis : A Case Study (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part II : 화학제품의 환경부하 전과정평가에 있어 건강영향분석 모의사례연구)

  • Park, Jae-Sung;Choi, Kwang-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.203-214
    • /
    • 2000
  • Health risk assessment is applied to streamlining LCA(Life Cycle Assessment) using Monte carlo simulation for probabilistic/stochastic exposure and risk distribution analysis caused by data variability and uncertainty. A case study was carried out to find benefits of this application. BTC(Benzene, Trichloroethylene, Carbon tetrachloride mixture alias) personal exposure cases were assumed as production worker(in workplace), manager(in office) and business man(outdoor). These cases were different from occupational retention time and exposure concentration for BTC consumption pattern. The result of cancer risk in these 3 scenario cases were estimated as $1.72E-4{\pm}1.2E+0$(production worker; case A), $9.62E-5{\pm}1.44E-5$(manger; case B), $6.90E-5{\pm}1.16E+0$(business man; case C), respectively. Portions of over acceptable risk 1.00E-4(assumed standard) were 99.85%, 38.89% and 0.61%, respectively. Estimated BTC risk was log-normal pattern, but some of distributions did not have any formal patterns. Except first impact factor(BTC emission quantity), sensitivity analysis showed that main effective factor was retention time in their occupational exposure sites. This case study is a good example to cover that LCA with probabilistic risk analysis tool can supply various significant information such as statistical distribution including personal/environmental exposure level, daily time activity pattern and individual susceptibility. Further research is needed for investigating real data of these input variables and personal exposure concentration and application of this study methodology.

  • PDF

Evaluation of Impact Sound Insulation Properties of Light-Framed Floor with Radiant Floor Heating System

  • Nam, Jin-Woo;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.75-84
    • /
    • 2002
  • In order to find out impact insulation properties, various types of current radiant floor heating systems and light-framed floors that are used in light-framed residential buildings were evaluated for two types of impact sources at the same time. Sound Pressure Level (SPL) was different from each impact sources for those spectrum patterns and peaks. In case of light-framed floor framework, the excitation position and the assumed effective vibrating area have effects on sound pressure level but it is not considerable, and Normalized SPL was reduced for each frequency by increasing the bending rigidity of joist. The mortar layer in the radiant heating system had relatively high density and high impedance, therefore, it distributed much of the impact power when it was excited, and reduced the Normalized SPL considerably. Nevertheless, Increasing a thickness of mortar layer had little influence on SPL. Ceiling components reduced the sound pressure level about 5~25 dB for each frequency. Namely, it had excellent sound insulation properties in a range from 200 to 4,000 Hz frequency for both heavy and lightweight impact sources. Also, there was a somewhat regular sound insulation pattern for each center frequency. The resilient channel reduced the SPL about 2~11 dB, irrelevant to impact source. Consequently, current radiant floor heating systems which were established in light-framed residential buildings have quite good impact sound insulation properties for both impact sources.

Approximate Life Cycle Assessment of Product Concepts Using Multiple Regression Analysis and Artificial Neural Networks

  • Park, Ji-Hyung;Seo, Kwang-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1969-1976
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making for the product concepts, and the best alternative can be selected based on its estimated LCA and benefits. Both the lack of detailed information and time for a full LCA for a various range of design concepts need a new approach for the environmental analysis. This paper explores a new approximate LCA methodology for the product concepts by grouping products according to their environmental characteristics and by mapping product attributes into environmental impact driver (EID) index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then, a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for newly designed products. The training is generalized by using product attributes for an EID in a group as well as another product attributes for the other EIDs in other groups. The neural network model with back propagation algorithm is used, and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines for the design of environmentally conscious products in conceptual design phase.

Approximate Life Cycle Assessment of Classified Products using Artificial Neural Network and Statistical Analysis in Conceptual Product Design (개념 설계 단계에서 인공 신경망과 통계적 분석을 이용한 제품군의 근사적 전과정 평가)

  • 박지형;서광규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2003
  • In the early phases of the product life cycle, Life Cycle Assessment (LCA) is recently used to support the decision-making fer the conceptual product design and the best alternative can be selected based on its estimated LCA and its benefits. Both the lack of detailed information and time for a full LCA fur a various range of design concepts need the new approach fer the environmental analysis. This paper suggests a novel approximate LCA methodology for the conceptual design stage by grouping products according to their environmental characteristics and by mapping product attributes into impact driver index. The relationship is statistically verified by exploring the correlation between total impact indicator and energy impact category. Then a neural network approach is developed to predict an approximate LCA of grouping products in conceptual design. Trained learning algorithms for the known characteristics of existing products will quickly give the result of LCA for new design products. The training is generalized by using product attributes for an ID in a group as well as another product attributes for another IDs in other groups. The neural network model with back propagation algorithm is used and the results are compared with those of multiple regression analysis. The proposed approach does not replace the full LCA but it would give some useful guidelines fer the design of environmentally conscious products in conceptual design phase.

Strength Evaluation and Life Prediction of the Multistage Degraded Materials (다단계 모의 열화재의 재료강도 평가와 수명예측)

  • 권재도;진영준;장순식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2271-2279
    • /
    • 1993
  • In the case of life prediction on the structures and machines after long service, it is natural to consider a degradation problems. Most of degradation data form practical structures are isolated data obtained at the time of periodical inspection or repair. From such data, it may be difficult to obtain the degradation curve available and necessary for life prediction. In this paper, for the purpose of obtaining a degradation curves, developed the simulate degradation method and fatigue test and Charpy impact test were conducted on the degraded, simulate degraded and recovered materials. Fatigue life prediction were conducted by using the relationship between fracture transition temperature (DBTT : vTrs) obtained from the Charpy impact test through the degradation process and fatigue crack growth constants of m and C obtained from the fatigue test.